版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SignalandAsignalisafunctionofindependentvariablessuchastime,distance,position,temperature.forexample,speechandmusicsignalsrepresentairpressureasafunctionoftimeatapointinClassificationofContinuousversusDiscrete RealversusComplex Scalar[ˈskeɪlə(r)]数量,标量versusVectorOnedimensionalversusMulti-Dimensional DeterministicversusRandomInthiscase,signalscanbeclassifiedintocontinuous-timesignalsanddiscrete-time(sequenceofnumbers)Acontinuous-timesignalwithacontinuousamplitudeisusuallycalledanogsignal.Adiscrete-timesignalwithdiscrete-valuedamplitudesrepresentedbyafinitenumberofdigitsisreferredtoasthedigitalsignal.Adiscrete-timesignalwithcontinuousvaluedamplitudesiscalledasampled-datasignal.Adigitalsignalisthusazed['kwɒntɑɪzd]sampledatasignal.Acontinuous-timesignalwithdiscretevalueamplitudesisusuallycalledazedboxcarsignal(量化矩形信号)System:ismadebyanumberofinctiveandinterdependentthings binationwithaspecificfunctionasawhole.Thedifferencebetweensystemandcircuit:thesystemfocusontheoverallsituation,thecircuitconcernedaboutthelocal.Circuitysistofocusonstudydetails(suchastheloopcurrentandvoltage)fromthesystempointofview,onecanconsiderhowitmightconstituteadifferentialorintegralfunctiondevices(suchasarithmeticunit)Itinvestigatestheresponseofalinearandtime-invariantsystemtoanarbitraryinputsignalLinearitymeansthattherelationshipbetweentheinputandtheoutputofthesystemisamap:Ifinputproducesresponseandinputresponsethenthescaledandsummedinputproducesscaledandsummedresponsewhere arerealscalars.[ˈskeɪlə(r)]数量,标量TimeinvariancemeansthatwhetherweapplyaninputtothesystemnoworTsecondsfromnow,theoutputwillbeidenticalexceptforatimedelayoftheTseconds.Thatis,iftheoutputduetoinputis,thentheoutputdueinputis.Hence,thesystemistimeinvariantbecausetheoutputdoesnotdependontheparticulartimetheinputisapplied.ThefundamentalresultinLTIsystemtheoryisthatanyLTIsystemcanbecharacterizedentirelybyasinglefunctioncalledthesystem'simpulseresponse.Theoutputofthesystemissimplytheconvolutionoftheinputtothesystemwiththesystem'simpulseresponse.Thismethodof ysisisoftencalledthetime point-of-view.Thesameresultistrueofdiscrete-timelinearshift-invariantsystemsinwhichsignalsarediscrete-timesamples,andconvolutionisdefinedonRelationshipbetweentheandEquivalently,anyLTIsystemcanbecharacterizedinthefrequency bythesystem'stransferfunction,whichistheLacetransformofthesystem'simpulseresponse(orZtransforminthecaseofdiscrete-timesystems).Asaresultofthepropertiesofthesetransforms,theoutputofthesysteminthefrequency istheproductofthetransferfunctionandthetransformoftheinput.Inotherwords,convolutioninthetime isequivalenttomultiplicationinthefrequency ForallLTIsystems,theeigenfunctions,andthebasisfunctionsofthetransforms,arecomplexexponentials.Thisis,iftheinputtoasystemisthecomplexwaveformforsomecomplexamplitude andcomplexfrequency,theoutputwillbesomecomplexconstanttimestheinput,sayforsomenewcomplex .Theratioisthetransferfunctionatfrequency.Becausesinusoidsareasumofcomplexexponentialswithcomplex-conjugatefrequencies,iftheinputtothesystemisasinusoid,thentheoutputofthesystemwillalsobeasinusoid,perhapswithadifferentamplitudeandadifferentphase,butalwayswiththesamefrequency.LTIsystemscannotproducefrequencycomponentsthatarenotintheinput.LTIsystemtheoryisgoodatdescribingmanyimportantsystems.MostLTIsystemsareconsidered"easy"to yze,atleastcomparedtothetime-varyingand/ornonlinearcase.AnysystemthatcanbemodeledasahomogeneousdifferentialequationwithconstantcoefficientsisanLTIsystem.Examplesofsuchsystemsareelectricalcircuitsmadeupofresistors,inductors,andcapacitors(RLCcircuits).Idealspring–mass–dampersystemsarealsoLTIsystems,andaremathematicallyequivalenttoRLCcircuits.impulseInsignalprocessing,theimpulseresponse,orimpulseresponsefunction(IRF),ofadynamicsystemisitsoutputwhenpresentedwithabriefinputsignal,calledanimpulse.(Mathematically,howtheimpulseisdescribeddependsonwhethersystemismodeledindiscreteorcontinuoustime.TheimpulsecanbemodeledasaDiracdeltafunctionforcontinuous-timesystems,orastheKroneckerdeltafordiscrete-timesystems.transferAtransferfunction(alsoknownasthesystemfunction[1ornetworkfunctionandwhenplottedasagraph,transfercurve)isamathematicalrepresentation,intermsofspatialortemporal(空间或时间)frequency,oftherelationbetweentheinputandoutputofalineartime-invariantsystemwithzeroinitialconditionsandzero-pointtransferfunctionistheLacetransformofthesystem'simpulseresponse(orZtransforminthecaseofdiscrete-timesystems).inthestudyofsignalsandsystems,theeigenfunctionofasystemisthesignalwheninputintothesystem,producesaresponsewiththecomplexconstantBIBOInsignalprocessing,specificallycontroltheory,BIBOstabilityisaofstabilityforlinearsignalsandsystemsthattakeinputs.BIBOstandsforBounded-InputBounded-Output.IfasystemisBIBOstable,thentheoutputwillbeboundedforeveryinputtothesystemthatisbounded.Asignalisboundedifthereisafinitevaluesuchthatthesignalmagnitudeneverexceeds,thatisfordiscrete-timesignals,orforcontinuous-timesignals.Continuous-timenecessaryandsufficientForacontinuoustimelineartimeinvariant(LTI)system,theconditionforBIBOstabilityisthattheimpulseresponsebeabsolu yintegrable,i.e.,itsL1normexist.Discrete-timesufficientForadiscretetimeLTIsystem,theconditionforBIBOstabilityisthattheimpulseresponsebeabsolu ysummable,i.e.,itsnormexist.Forarationalandcontinuous-timesystem,theconditionforstabilityisthattheregionofconvergence(ROC)oftheLacetransformincludestheimaginaryaxis.Whenthesystemiscausal,theROCistheopenregiontotherightofaverticallinewhoseabscissaistherealpartofthe"largestpole",orthepolethathasthegreatestrealpartofanypoleinthesystem.TherealpartofthelargestpoledefiningtheROCiscalledtheabscissa[æbˈsɪsə]ofconvergence.Therefore,allpolesofthesystemmustbeinthestrictlefthalfofthes-neforBIBOstability.Thisstabilityconditioncanbederivedfromtheabove conditionasfollowswhereandTheregionofconvergencemustthereforeincludetheimaginaryDiscrete-timeForarationalanddiscretetimesystem,theconditionforstabilityisthattheregionofconvergence(ROC)ofthez-transformincludestheunitcircle.Whenthesystemiscausal,theROCistheopenregionoutsideacirclewhoseradiusisthemagnitudeofthepolewithmagnitude.Therefore,allpolesofthesystemmustbeinsidetheunitcircleinthez-neforBIBOstability.Thisstabilityconditioncanbederivedinasimilarfashiontothecontinuous-timewhereandTheregionofconvergencemustthereforeincludetheunitAsystemiscausaliftheoutputdependsonlyonpresentandpast,butnotfutureinputs.Anecessaryandsufficientconditionforcausalityiswhereistheimpulseresponse.ItisnotpossibleingeneraltodeterminecausalityfromtheLacetransform,becausetheinversetransformisnotunique.Whenaregionofconvergenceisspecified,thencausalitycanbedetermined.Inelectronics,controlsystemsengineering,andstatistics,thefrequency referstotheysisofmathematicalfunctionsorsignalswithrespecttofrequency,ratherthantime.[1]Putsimply,a graphshowshowasignalchangesovertime,whereas graphshowshowmuchofthesignallieswithineachgivenfrequencybandoverarangeoffrequencies.Afrequency- representationcanalsoincludeinformationonthephaseshiftthatmustbeappliedtoeachsinusoidinordertobeableto binethefrequencycomponentstorecovertheoriginaltimesignal.Agivenfunctionorsignalcanbeconvertedbetweenthetimeandfrequency swithapairofmathematicaloperatorscalledatransform.AnexampleistheFouriertransform,whichposesafunctionintothesumofa(potentiallyinfinite)numberofsinewavefrequencycomponents.The'spectrum'offrequencycomponentsisthefrequency ofthesignal.TheinverseFouriertransformconvertsthefrequency functionbacktoatimefunction.Aspectrum yzeristhetoolcommonlyusedtovisualizereal-worldsignalsinthefrequency MagnitudeandInusingtheLace,Z-,orFouriertransforms,thefrequencyspectrumiscomplex,describingthemagnitudeandphaseofasignal,oroftheresponseofasystem,asafunctionoffrequency.Inmanyapplications,phaseinformationisnotimportant.Bydiscardingthephaseinformationitispossibletosimplifytheinformationinafrequencyrepresentationtogenerateafrequencyspectrumorspectraldensity.Aspectrumyzerisadevicethatdisysthespectrum,whilethetimefrequencycanbeseenonanoscilloscope.[əˈsɪləskəʊp]Thepowerspectraldensity功率谱密度isafrequency-descriptionthatcanbeappliedtoalargeclassofsignalsthatareneitherperiodicnorsquare-integrable(平方可积);tohaveapowerspectraldensity,asignalneedsonlytobetheoutputofawide-sensestationaryrandomprocess广义平稳随机过程.DifferentfrequencyAlthough"the"frequencyisspokenofinthesingular,thereareanumberofdifferentmathematicaltransformswhichareusedtoyzetimefunctionsandarereferredtoas"frequency"methods.Thesearethemostcommontransforms,andthefieldsinwhichtheyareused:Fourierseriesrepetitivesignalsoscillating[asə'leɪtɪŋ]systemsFouriertransform–nonrepetitivesignals,transients[t'rænzɪənts]瞬变Lacetransform–electroniccircuitsandcontrolZtransform–discretesignals,digitalsignalMoregenerally,onecanspeakofthetransformwithrespecttoanytransform.Theabovetransformscanbeinterpretedascapturingsomeformoffrequency,andhencethetransformisreferredtoasafrequency.DiscretefrequencyTheFouriertransformofaperiodicsignalonlyhasenergyatabasefrequencyanditsharmonics.Anotherwayofsayingthisisthataperiodicsignalcanbeyzedusingadiscretefrequency.Dually,adiscrete-timesignalgivesrisetoaperiodicfrequencyspectrum.Combiningthesetwo,ifwestartwithatimesignalwhichisbothdiscreteandperiodic,wegetafrequencyspectrumwhichisbothperiodicanddiscrete.ThisistheusualcontextforadiscreteFouriertransform.FourierInmathematics,aFourierseries posesperiodicfunctionsorperiodicsignalsintothesumofa(possiblyinfinite)setofsimpleoscillatingfunctions,namelysinesandcosines(orcomplexFourierTheFouriertransform,namedafterJosephFourier,isamathematicaltransformwithmanyapplicationsinphysicsandengineering.Verycommonlyittransformsamathematicalfunctionoftime,f(t),intoanewfunction,sometimesdenotedbyorF,whoseargumentisfrequencywithunitsofcycles/s(hertz)orradianspersecond.LaceInmathematicsandsignalprocessing,theZ-transformconvertsatimesignal,whichisasequenceofrealorcomplexnumbers,intoacomplexfrequencyrepresentation.Abandlimitedfunctioncanbeperfectlyreconstructedfromacountablesequenceofsamplesifthebandlimit,B,isnogreaterthanhalfthesamplingrate(samplespersecond)Thissubjectpresentsthetheoreticalbasisforsystemysisandgivesstudtsskillsinusingthetechniquestodesigncomponentsofreal systems.Thederivationofmodelsfromreal-worlddevicesthroughmeasurementandthecomparisonofmodelpredictionswithexperimentalresultsisemphasisedinthelaboratorycomponentofthecourse.Agroupprojectthatrequiresthedesignandimplementationofpartofa municationsystemallowsstudentstoapplytheirknowledgetoareal-lifeproblem.Topicsinclude:signaltypesandtheirrepresentationinthetimeandfrequencys;odellingsysteswithdifferentialordifferenceequationsandtransforoftheequations;signaloperationsandprocessing;therelationshipbetweendiscreteandcontinuoustiesandthemathematicaltechniquesapplicabletoeach;theeffectsoffeedback;timeandfrequencyperformanceofsystems;systemstability;andcontroldesigntechniquesandsimplecommunicationsystems.Signal:manifestationofthemessage,themessageisthespecificcontentofthesignal.Inthecommunicationsystem,thegenerallanguage,text,imagesordataarecollectivelyreferredtoasmessage信号分类:周期信号:依一定时间间隔周而复始,且是无始无终的信号(Periodicsignals:againandagainaccordingtoacertaintimeinterval,andiswithoutbeginningandwithoutendsignal(expressionoff(t)=f(t+T)n=0,±1...)Non-periodicsignal:timecyclecharacteristics(thecyclesignalcycleTtendstoinfinityand enon-periodicsignal)Continuous-timesignalsanddiscrete-timesignalcanbedividedbasedonthecontinuityofthefunctionvaluesanddiscreteContinuous-timesignal:inagiventimeinterval,inadditiontothenumberofconsecutivepoints(breakpoints),thevalueofanytimecanbegiventodeterminethefunctionvalue,timeandamplitudearecontinuoussignalsogogsignals,thepracticalapplicationdoesnotdistinguishbetween ogsignalandcontinuous-timesignals.(SineDiscrete-timesignal:timediscretefunctionvalueisgivenonlyinsomeofcontinuous,instantaneous,intheothertimeisundefined(Randomsignals:discretesignalatime-discreteamplitudecontinuous(nottobelimitedtocertainvalues,bothpositiveandnegative)(populationstatisticsbymonthnumber)Digitalsignals:discretesignalsatimevalue(limitedtocertaindiscretevalues,suchas0,1)arediscreteDeterminethesignal:thesignalisexpressedasadefinitefunctionoftime(sinewave)Randomsignal:theactualtransmissionofthesignalwithunforeseenOne-dimensionalsignals:voicesignalisafunctionoftime-varyingsoundMultidimensionalsignals:electromagneticwavepropagationinthree-dimensionalspaceSystem:ismadebyanumberofinctiveandinterdependentbinationwithaspecificfunctionasaThedifferencebetweensystemandcircuit:thesystemfocusontheoverallsituation,thecircuitconcernedaboutthelocal.Circuitysistofocusonstudydetails(suchastheloopcurrentandvoltage)fromthesystempointofview,onecanconsiderhowitmightconstituteadifferentialorintegralfunctiondevices(suchasarithmeticunit)离散时间信号(RLC电路)Systems:continuous-timesystems:thesysteminputsandoutputsarecontinuous-timesignal,anditsinternalnorconvertedtodiscrete-timesignal(RLCcircuit)Discrete-timesystem:thesysteminputandoutputsarediscrete-timesignal(digitalcomputer,thethirdsymboldoesnotexistbetweentwoadjacentsymbols,noothervaluesuchas0110)andthetwooftenmix,knownasmixedTime-varyingsystem:Thesystemparameterschangeovertime(dailytemperature)Time-invariantsystem(ConstantSystems):Theparametersofthesystemdoesnotchangeovertime,strictlyspeaking,doesnotexist,canonlysaythatwithinacertaintimeconstantLinearsystem:superpositionandhomogeneity(ie,homogeneity,Superposition:whenseveralexcitationsignalatthesametimeactingonthesystem,thetotaloutputresponseequaltotheresponsegeneratedbytheindividualroleofeachincentive;Uniformity:TheinputsignalismultipliedbyaconstantresponsetimestakethesameconstantNonlinearsystems:doesnotmeettheoverlayandtheuniformityofthe线性时不变系统特性(LineartimeinvariantLIT)Superpositionandhomogeneity;time-invariante(t)r(t)de(t)/dt时,dr(t)/dt.Differentialcharacteristics:Ifthesystemundertheactionoftheexcitatione(t)responser(t)de(t)/dt,whentheexcitation,theresponsetothedr(t)/dt.(causalityt0时刻的响应只与t=t0和t<t0时刻的输入有关,r(t)=e(t+1)r(t)=e(t)是因果系统Causality(causality):referstotheresponseofthesystemattimet0t=t0andt<t0,timeinput,thatisincentivetoproducetheresponseinresponsetotheincentiveconsequences.r(t)=e(t-1)isnotacausalsystem,r(t)=e(t+1)andr(t)=e(t)isacausalCommonlyusedsignals:theindexsignal:theimportantcharacteristicsofthedifferentialandintegralofitstimeisstillexponential(expressionsandSinusoidalsignal:thetimedifferentialandintegralremainsthesamefrequencysinusoidalsignal(expressedwiththelegend)Complexexponentialsignal:infact,cannotproducethecomplexexponentialsignal(forillustrations)((信号基本运算:移位:波形在tSignalofthebasicoperations:shift:thewaveformmoveoverallinthet-t=0Fold:foldoverthewaveformatt0
Scale:thetimelineforthe arkcompress1)orextended(coefficientDifferential(infinitesubdivision):theedgeofthegraphicssilhouette;tomakethegraphicsclearer积分(无限求和:图形更加平滑,可削弱信号中的毛刺(噪声)响Integral(infinitesum):smoothergraphics,canweakenimpactoftheglitchinthesignal阶跃信号(单位阶跃t=0时,对某一电路接入单位电源,并且无限持特性:单边性,即信号在某接入时刻t0Stepsignal(unitstep):thephysicalbackground:att=0,thepowerofacircuitaccessunit,andunlimitedcontinues(meaning,arectangularCharacteristics:unilal,thatisthesignalamplitudeofaaccesstimet0iszeroImpulsesignal(unitimpulse):Physicalbackground:theimpactofphysicalphenomenaneedtouseaveryshorttime,butthevalueofagreatmodeltodescribethe(rectangular)f(tf(-Features:dualfunction,f(t)=f(-Pulse->impulsesignal:theareatomaintaintherectangularpulse,whenthepulsewidthtendsto0,theamplitudetendstoinfinity,thislimitistheunitimpulsefunctionStepandimpulsecontact:theintegraloftheimpulsesignalfunctionisequaltothestepsignalfunction;stepsignalfunctionofthedifferentialisequaltotheimpulsesignalfunctionThezero-inputresponse:theroleofexternalexcitationsignalnoresponse,onlytheinitialstate(startingtimeofenergystoragesystem);Thezerostateresponse:donotconsiderthemomenttheroleoftheenergystoragesystem(theinitialstateisequaltozero),plustheresponsegeneratedbytheexcitationsignalbythesystem;(Theexpandedfunctionf(t)satisfytheDirichletWeekperiod,ifthereisdiscontinuitypoint,thenstoppedthenumberofpointsislimitedWeekperiod,thenumberof umandminimumvaluesisInInaweekperiod,thesignalis yintegrable,Fouriertransform:transformandinversetransform变换的基本性质:线性(叠加性之和ThebasicpropertiesoftheFouriertransformof:linear(superposition),thesumofthespectrumofthesignalisequaltothespectrumofeachindividualsignal:时移特性()信号f(t)在时域中沿时间轴右移(延时)t0等效于在频域中频谱乘以因子:Shift:(formula)signalf(t)isshiftedtotherightalongthetimelineinthe (delay)t0,equivalentmultipliedbythefactorinthe spectrum,Whichmeansthatthesignalisshiftedtotheright,theamplitudespectrumofthesame,whilethephasespectrumtoproduceadditionalchangesScalechangesincharacteristics:LegendSymmetry,thatisanevenfunction,thespectrumoftherectangularpulsefunctionSa,Sa-shapedpulsespectrumoftherectangularfunctionPhasespectrum:thephasefunctionofthespectralfunction,indicatingthatthephaserelationshipbetweenthevariousfrequencycomponentsinthesignalF的绝对Amplitudespectrum:isthefunctionofthemagnitudeofthespectrumfunction,indicatingthatthemagnitudeofrelationshipsbetweenthevariousfrequencycomponentsinthesignal,representedbytheabsolutevalueofFFourierseriesisequivalenttotheFouriertransformintheperiodicsignalinaspecialformofexpressionFourierseriesandFouriertransformoftheperiodicrectangularpulsef(tFj是的实函数;f(tFj是f(t是非奇非Fj是Functionandcharacteristicsofthespectrum:Ifthefunctionisevenfunction,itsspectraldensityfunctionisarealfunction;ifthefunctionisanoddfunction,itsspectraldensityfunctionisavirtualfunction;ifthefunctionisnon-oddnon-dualfunction,itsspectraldensityfunctionisacomplexfunction.(1)Periodicsignalspectrumischaracterizedbyadiscretespectrum,whiletheaperiodicsignalspectrumischaracterizedbyacontinuousspectrumThespectrumoftheperiodicsignalamplitudespectrumandphaseThecharacteristicsoftheperiodicsignalspectrumincludingdiscreteThesamecycleofthepulse,adjacentlinesintervalthesame;thenarrowerthepulsewidth,thewiderthewidthofthespectrum,theband Frequencybandwidthofasinglerectangularpulseanditspulsewidthτ,τisthegreater,thenthebandwidthismorenarrow.周期性矩形脉冲信号的频谱,脉冲周期TPeriodicrectangularpulsesignalspectrum,thepulseperiodTisthelongertheintervalthesmallerlines.TheTheexpansionofthesignalinthe correspondingtoitsspectruminthe
Cyclepulseofthepulsewidth,periodTgreatertheintervallines,thespectrumismoredense;magnitudesThesamecycleofthepulseintervaladjacentlinesthesame;thenarrowerthepulsewidth,themorethenumberofspectrallinesbetweentwozero,containedinthebandcomponentmorePeriodicsignalbandwidthandthepulsewidthisinverselyproportionalto.Fn2倍。Fouriertransformoftheperiodicsignal(orthespectraldensityfunction)consistsofaninfinitenumberofimpulsefunction,itsstrengthis2timesthecorrespondingamplitudeSignalofconvergenceshowsthatthesignalenergyisconcentratedinthelowfrequencyband.WelearneddifferentkindsofsignalanddifferentkindsofsystemsinthisAsignalisasetofinformation.HerewetalkaboutsignalsthatarefunctionsofSignalpowerandWedefinethesignalenergyThesignalenergymustbefiniteforittobeameaningfulmeasureofthesignalsize.Thatis,thesignalamplitude→0as|t|P25)Ifnot,amoremeaningfulmeasureisthetimeaverageofenergy,wecallit[f(t)=tisneitherapowernoraenergyAsignalwithfiniteenergyisanenergysignal,andasignalwithfiniteandnonzeropowerisapowersignal.Asignalwithfiniteenergyhaszeropower,Asignalwithfinitepowerhasinfiniteenergy.Continuous-time,discrete-time,og,anddigitalsinalContinuous-timesignalisspecifiedforeveryvalueoftimet.Discrete-timeisspecifiedonlyatdiscretevaluesoft.ogsignalcantake
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市园林绿化工程采购合同
- 2024年宠物狗美容与护理服务合同
- 2024年会议室出租合同范本
- 2024年塑钢门窗施工合同
- 企业与个人解除劳动合同协议书
- 山林土地承包合同管理与执行指南
- 环境保护项目安全监理合同协议书
- 2024年融媒体项目综合评估报告
- 2023年干气制乙苯催化剂项目评价分析报告
- 铁矿石购销合同的执行流程
- GB/T 41365-2022中药材种子(种苗)白术
- GB/T 18371-2001连续玻璃纤维纱
- GB/T 12527-2008额定电压1 kV及以下架空绝缘电缆
- 一级建造师考试题库及答案(全国通用)
- 竣工工程销项工作计划表
- 公司社会责任管理制度
- 高速公路施工全流程标准化手册
- 2022届北京市东城区高三语文一模语文试卷讲评课件
- 通力电梯技能培训教材系列:《KCE控制系统课程》
- 模板-侦查阶段第二次会见笔录
- 2023年惠州仲恺城市发展集团有限公司招聘笔试题库及答案解析
评论
0/150
提交评论