北大考研计算机网络_第1页
北大考研计算机网络_第2页
北大考研计算机网络_第3页
北大考研计算机网络_第4页
北大考研计算机网络_第5页
已阅读5页,还剩89页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计算机网络技术的历史和新进展高速计算机信息网络是信息社会的神经和血管体系结构:网络的骨架和神经协议:网络的心脏和血液主要内容网络概述Internet的发展和成功经验计算机网络技术的历史回顾国际高速计算机网络研究计划中国高速计算机网络研究计划What

is

aNetwork?from

end

system

point

ofviewNetwork

offers

a

service:

move

informationbird,

fire,

messenger,

truck,

telegraph,

telephone,

Internet

…another

example,

transportation

service:

move

objectshorse,

train,

truck,

airplane

...What

distinguish

different

types

of

networks?The

services

they

provideWhat

distinguish

the

services?latencybandwidthloss

ratenumber

of

end

systemsservice

interface

(how

to

invoke?)other

detailsreliability,

unicast

vs.

multicast,

real-time,

message

vs.

byte

...What

is

aNetwork?Infrastructure

Centric

ViewElectrons

and

photons

as

communicationmediumLinks:

fiber,

copper,

satellite,

…Switches:

mechanical/electronic/optical,crossbar/BanyanProtocols:

TCP/IP,

ATM,

MPLS,

SONET,Ethernet,

PPP,

X.25,

FrameRelay,

AppleTalk,IPX,

SNAFunctionalities:

routing,

error

control,

congestioncontrol,

Quality

of

Service

(QoS)Applications:

FTP,

WEB,

X

windows,

...Types

of

NetworksGeographical

distanceLocal

Area

Networks

(LAN):

Ethernet,

Token

ring,FDDIMetropolitan

Area

Networks

(MAN):

DQDB,

SMDSWide

Area

Networks

(WAN):

X.25,

ATM,

frame

relayInformation

typedata

networks

vs.

telecommunication

networksApplication

typespecial

purpose

networks:

airline

reservation

network,banking

network,

credit

card

network,

telephonygeneral

purpose

network:

InternetTypes

of

NetworksRight

to

useprivate:

enterprise

networkspublic:

telephony

network,

InternetOwnership

of

protocolsproprietary:SNAopen:

IPTechnologiesterrestrial

vs.

satellitewiredvs.

wirelessProtocolsIP,

AppleTalk,

SNA计算机网络发展历史回顾七十年代的计算机网络X.25

分组交换网:各国的电信部门建设运行各种专用的网络体系结构:SNA,DNAInternet

的前身ARPANET进行实验运行八十年代的计算机网络标准化计算机网络体系结构:OSI局域网络LAN

技术空前发展建成NSFNET,Internet

初具规模九十年代的计算机网络Internet空前发展Web技术在Internet/Intranet

得到广泛应用主要内容网络概述Internet的发展和成功经验计算机网络技术的历史回顾国际高速计算机网络研究计划中国高速计算机网络研究计划The

InternetGlobal

scale,

general

purpose,

heterogeneous-technologies,

public,

computer

networkInternet

Protocolopen

standard:

Internet

Engineering

Task

Force

(IETF)

asstandard

bodytechnical

basis

for

other

types

of

networksIntranet:

enterprise

IP

networkDeveloped

by

the

research

communityHistory

of

the

Internet70’s:

started

as

a

research

project,

56

kbps, <

100computers80-83:

ARPANET

and

MILNET

split,85-86:

NSF

builds

NSFNET

as

backbone,

links

6Supercomputer

centers, 1.5

Mbps,

10,000

computers87-90:

link

regional

networks,

NSI

(NASA),ESNet(DOE),DARTnet,

TWBNet

(DARPA),

100,000

computers90-92:

NSFNET

moves

to

45

Mbps,

16

mid-levelnetworks94:

NSF

backbone

dismantled,

multiple

private

backbonesToday:

backbones

run

at

2.5

/

10

Gbps,

10s

millionscomputers

in

150

countriesGrowth

of

the

InternetNumber

of

Hosts

ontheInternet:Dec.1987Oct.

199028,174313,000Oct.

19932,056,000Apr.

19955,706,000Jul.

199719,540,000Jul.

200093,047,785100101100010000Aug.

19812131000000Oct.

19841,024100000100000001000000001981年1983年1985年1987年1989年1991年1993年1995年1997年1999年Recent

Growth

(1991-2000)Internet

发展规模和趋势Internet的发展速度是历史上发展最快的一种技术以商业化后达到5000

万用户为例电视用了13年,收音机用了38年,电话更长Internet

从商业化后达到5000

万用户用了4

年时间Internet

正在以超过摩尔定理的速度发展网络时代的三大基本定律摩尔定律:CPU性能18个月翻番,10年100倍。所有电子系统(包括电子通信系统,计算机)都适用摩尔定律:

CPU性能18个月翻番,10年100倍。所有电子系统(包括电子通信系统,计算机)都适用光纤定律:超摩尔定律,骨干网带宽9个月翻番,10年10000倍。带宽需求呈超高速增长的趋势光纤定律:超摩尔定律,骨干网带宽9个月翻番,10年10000倍。带宽需求呈超高速增长的趋势迈特卡尔夫定律:联网定律,网络价值随用户数平方成正比。未联网设备增加N倍,效率增加N倍。联网设备增加N倍效率增加N2倍迈特卡尔夫定律:联网定律,网络价值随用户数平方成正比。未联网设备增加N倍,效率增加N倍。联网设备增加N倍,效率增加N2倍网络带宽与CPU性能光纤容量高水平大容量光纤传输试验系统容量光纤长度特点研制单位3Tb/s

40km(160Gb/s

X

19

CH

OTDM/WDM)

(DSF-l0=1535nm)用T-EDFA用DSF光纤(NZDSF)NTTPD1-1-1.02Tb/s(20Gb/s

x

51

CH

WDM)1000km(SMF

环测)0.4b/s/Hz,用SMF光纤101km放大器间距CNETPD4-1-1Tb/s(40Gb/s

x

25

CH)342km(True

Wave

光纤)用TrueWave光纤

85

km放大器间距LucentPD7-1-750Gb/s

2000km

采用C波段和L波段(5.3Gb/s

x

50

CH,10Gb/s

x

8CH)(纯Si光纤+NZDSF环测)纯Si光纤TycoPD16-1-640Gb/s(10Gb/s

x

64

CH)7200km

0.33b/s/Hz(NZDSF

环测)TycoPD2-1-490Gb/s(10Gb/s

x

49

CH)335.2KM

采用拉曼放大+EDFA混合

Lucent(ZDSF

环测

)

0色散光纤(67km)+NZDSF(17km)PD8-1-340Gb/s6380km实线试验Alcatel(10Gb/s

x

34

CH

WDM)(NZDSF)50GHz

SpacingPD18-1-80Gb/s

172km

Soliton

Chalmer(10Gb/s

x

8

CH

OTDM)(DSF

l0=1547nm)已敷设的光纤PD6-1Data

(Still)

Overtaking

Voice1996199719981999200020012002140120100806040200RelativeCapacity(%)VoiceDataSource:

MCI

(Vint

Cerf)International

data

traffic

already

exceeds

internationalvoice

from

Australia

andScandinavia.180160200019981996IP

(Still)

Conquering

DataAll

OtherIPXTCP/IPTraffic

RatiosSource:

Gartner

1997100%90%80%70%60%50%40%30%20%10%0%RelativeUserPopulationMultimediaDynamic

WWWStatic

WWW

FTP

and

TelnetE-Mail

and

NewsOther8%17%39%27%7%2%13%18%23%23%16%7%14%17%12%15%28%14%Internet

(Still)

Going

InteractiveTo

Transactional

Pages(Red)

andAudio/Video

Content

(Purple)100%80%60%40%20%0%200019981996Source:

The

Yankee

Group,

1996Apps

(Always)

Driving

CapacitySimple

Video,

MultimediaBrowsing,

PCM

VoiceIP,

PCS,E-Mail,File

TransferPagingVideo

Conferencing,

MPEG1

NTSC

VideoTelnet,

VoIPISDN,Frame

RelayATM/POST3/E3T1/E1New

ModemWireless

WANOld

Modem.004.0192.0288.1281.53155Mb/sMinimum

Bandwidth

forApplication

per

UserVirtual

Reality,

Medical

ImagingData/Voice/Video

Transport

ConvergenceInternet高速信息网络的发展方向:通信与计算聚合通信和计算技术的聚合改变了各自的原有特征高速信息网络体系结构的发展趋势分层结构;分布控制、管理和安全机制分层结构比特路层服务层应用层高速信息网络的体系结构比特路层主干网传输技术:SDH/SONET,光纤主干网交换技术:IP

over

SDH或光纤,GbE,支持IPv6端系统接入技术:LAN;ADSL、FTTH、HFC服务层(支撑技术)全球统一的地址、域名;安全的系统管理和访问控制Browser/Server

计算模式,支持Data,Voice,Video以Java

为代表的网络编程语言应用层(用户功能)用户-用户(立即响应,可适当延迟)用户-服务器(立即响应,可适当延迟)ATMSDH/SONETIPOpticalIP

Transport

AlternativesB-ISDNIP

overATMIP

overSDH/SONETIP

overOpticalLong-Term

WinnersIPATMOpticalIPSDH/SONETOpticalIPOpticalMultiplexing,

Protection,

and

Management

at

Every

Layer.Eliminating

Layers

Lowers

Costs.Who

is

Who

on

the

Internet

?Internet

Engineering

Task

Force

(IETF):

The

IETF

is

theprotocol

engineering

and

development

arm

of

the

Internet.Subdivided

into

many

working

groups,

whichspecifyRequest

For

Comments

or

RFCs.IRTF

(Internet

Research

Task

Force):

The

InternetResearch

Task

Force

is

a

composed

of

a

number

offocused,

long-term

and

small

Research

Groups.Internet

Architecture

Board

(IAB):

The

IAB

is

responsiblefor

defining

the

overall

architecture

of

the

Internet,

providing

guidance

and

broad

direction

to

the

IETF.The

Internet

Engineering

Steering

Group

(IESG):

TheIESG

is

responsible

for

technical

management

of

IETFactivities

and

the

Internet

standards

process.

Standards.Composed

of

the

Area

Directors

of

the

IETFworkinggroups.Internet

Standardization

ProcessAll

standards

of

the

Internet

are

published

asRFC

(Request

for

Comments).

But

not

all

RFCsare

Internet

Standards

!available:A

typical

(but

not

only)

way

of

standardization

is:Internet

DraftsRFCProposed

StandardDraftStandard (requires

2

working

implementation)Internet

Standard

(declared

by

IAB)David

Clark,

MIT,

1992:

"We

reject:

kings,presidents,

and

voting.

We

believe

in:

roughconsensus

and

running

code.”Services

Provided

by

the

InternetShared

access

to

computing

resourcestelnet

(1970’s)Shared

access

to

data/filesFTP,

NFS,

AFS

(1980’s)Communication

medium

over

which

people

interactemail

(1980’s),

on-line

chat

rooms,

instant

messaging

(1990’s)audio,

video

(1990’s)replacing

telephone

network?A

medium

for

information

disseminationUSENET

(1980’s)- WWW

(1990’s)replacing

newspaper,

magazine?audio,

video

(1990’s)replacing

radio,

CD,

TV?Today’s

VisionEverything

is

digital:

voice,

video,

music,picturesEverything

is

on-line:

bank

statement,

medicalrecord,

books,

airline

schedule,

weather,highway

traffic,

toaster,

refrigerator

…Everyone

is

connected:

doctor,

teacher,

broker,mother,

son,

friends,

enemiesWhat

isNext?Electronic

commercevirtual

enterpriseInternet

entertainmentinteractive

sitcomWorld

as

a

small

villagecommunity

organized

according

to

interestsenhanced

understanding

among

diverse

groupsElectronic

democracylittle

people

can

voice

their

opinionsto

the

wholeworldbridge

the

gap

between

information

haves

and

have

no’sElectronic

terrorismhacker

can

bring

the

wholeworld

to

itskneeIndustrial

PlayersTelephone

companiesownlong-haul and

access

communication

links,customersCable

companiesownaccesslinksWireless/Satellite

companiesalternative

communicationlinksUtility

companies:

power,

water,

railwayown

right

of

way

to

lay

down

more

wiresMedium

companiesown

contentInternet

Service

ProvidersEquipment

companiesswitches/routers, chips,

optics,

computersSoftware

companiesBackboneISPISPInternet

Physical

InfrastructureResidentialAccessModemDSLCablemodemSatelliteLANEnterprise/ISP

access,Backbone

transmissionT1/T3,

DS-1

DS-3OC-3,

OC-12ATMvs.

SONET,

vs.WDMCampus

networkEthernet,

ATMInternet

Service

Providersaccess,

regional,

backbonePoint

of

Presence

(POP)Network

Access

Point(NAP)Links

for

Long

Haul

TransmissionTypes

of

links- T1/DS1:

1.544

Mbps-

T3/DS3: 44.736

Mbps- STS-1/OC-1: 51.850

Mbps- STS-3/OC-3: 155.2

Mbps- STS-12/OC-12:622.080Mbps- STS-48/OC-48:

2.488

Gbps- STS-192/OC-192:

9.953GbpsHigher

levels

of

servicesoffered

commerciallyFrame

RelayATMPossibilitiesIP

over

SDH/SONETIP

over

ATMIP

over

Frame

RelayIP

over

WDMInternet

的成功经验有远见的政府不断支持:1969-有风险的企业参与和投入:NFS:MCI、IBMvBNS:MCI;Abilene:

Qwest,CISCO联合协作的开放式研究:IETF/RFC教育和科研的示范网络为起点具有实验物理学的研究特点ARPAnet、NSF、ANS、vBNS简单实用的技术路线:TCP/IPResearch

andDevelopmentCommercializationPartnershipsPrivatizationNSFNETInternet2,

Abilene,

vBNSAdvanced

US

Govt

NetworksARPAnetgigabittestbedsActiveNetswirelessWDMSprintLinkInternetMCIUS

GovtNetworksANSInteroperableHigh

PerformanceResearch

&EducationNetworks21st

CenturyNetworkingQuality

of

Service(QoS)主要内容网络概述Internet的发展和成功经验计算机网络技术的历史回顾国际高速计算机网络研究计划中国高速计算机网络研究计划OutlineThe

first

design

for

a

packet-switchednetwork

by

Paul

Baran

in

early

60’sTCP/IP

protocol:

one

realization

of

thebasic

principles

in

Baran’s

designHow

the

Internet

looks

like

todayWhere

it

may

be

moving

toPaul

Baran’s

classical

work“On

Distributed

Communications”Time:

1960

-

1964Goal:

building

a

robust

communication

systemthat

could

survive

nuclear

attacksOutcome:

a

packet-switched

networkDST Distce

Nxt-HDestination

addressdataWhat

is

in

Baran’s

DesignA

self-adaptive

system:

hot-potato

routingIf

don’t

know

better:

forwarding

packets

to

allneighborsUpdate

routing

table

by

observing

packetspassing

by;

old

routing

entries

timeout

anddeletedForward

packets

ASAP-

not

necessarily

along

shortest

paths

all

thetimeLearning

&

adapting

to

the

changing

environmentWhat

is

in

Baran’s

Design

(cont’)Datagram

deliveryEach

switch

makes

packet

forwarding

decisionbased

on

its

own

routing

tableEach

packet

is

forwarded

independently

fromany

othersSwitches

keep

no

state

about

end

nodesNot

a

most

efficient

networkDeliverywill

not

be

perfectEndsystems

must

tolerate

&

recover

from

transmissionerrorsWhat

is

in

Baran’s

Design

(cont’)A

distributed

systemall

switch

nodes

are

equaleliminating

any

single

point

of

failurecomponents

may

fail,

the

system

must

notsystem

robustness

throughadequate

physical

redundancyadaptive

routingSimulation

experiment

demonstrated

that

“extremelysurvivable

networks

can

be

built

using

a

moderately

lowredundancy

of

connectivity

level”—Paul

Baran,

1964some

less

known

side

of

the

story...at

the

timea

number

of

people

in

telecommunication

industryconsidered

Baran’s

proposal

“totally

preposterous”“they

kicked,

screamed,

grumbled,

and

worse.

Theirresponse

tended

to

be

emotional,

often

with

anger,

rarelywith

humor…”“outsiders

could

not

possibly

understand

thecomplexity

of

large

systems

like

the

telephonenetwork”Different

approaches

to

systemreliabilityphone

system

at

the

time

(still

truetoday)Dumb

end

nodes,

smart

networkmaking

each

and

every

network

component

reliablesystem

reliability

=

component

reliabilityhigh

component

reliability

by

local

redundancyeverything

expected

to

work;

failures

expected

to

beextreme

exceptionsa

human

configured,

tightly

controlled

systemBaran

proposala

reliable

system

built

out

of

simple,

unreliable

partsan

adaptive

system

that

adjusts

itself

to

changesautomaticallySmart

ends

to

fix

transmission

errorsOne

Realization

of

Baran’s

Desing:the

Internetinterconnecting

heterogeneous

subnetstwo

basic

functionalities:globally

unique

addressesdatagram

delivery

from

sources

to

destinations

via

dynamic

routingClaim:

simple,

flexible,

scalable,

and

robustIP’s

view

of

the

worldall

kinds

of

applicationsall

kinds

of

transportprotocolsIPAll

kinds

of

subnettechnologiesDatagrams

as

the

basic

building

block:System

SimplicityEach

packet

carries

its

own

addressOne

routing

table

serves

all

trafficAn

enabler

to

the

explosive

growththe

simpler,

the

fewer

chances

to

go

wrongthe

simpler,

the

easier

to

growthe

requirement

of

least

common

network

functionalitymaximizes

the

number

of

usable

networksDatagrams

as

the

basic

building

block:Flexibility“runs

over

anything”IP

started

with

ARPANET,

PRNET,

SATNET;

all

longgonetoday

IP

runs

over

100

Mb

or

Gb/s

Ethernet,FDDI,

FrameRelay,

ATM,

SONET,

DWDM

…Supports

all

different

applicationsused

to

be

telnet,

ftp,

email

onlynow

audio,

video,

web,

e-commerce,

online-educationWhat

will

the

future

bring?The

best

bet

would

be

to

stay

flexibleDatagrams

as

the

basic

building

block:ScalabilityTo

scale

the

system

must

be

able

to

gracefullyhandlethe

growth

in

the

total

number

of

end

systemsthe

growth

in

traffic

volumethe

growth

in

network

sizelarger

routing

tablesMore

frequent

changesWith

IP,

“the

network

knows

nothing

about

individual

endapplications;

end

applications

know

nothing

about

networkinternals”—Van

Jacobsonmade

it

possible

to

aggregate

routing

table

entries

accordingto

scaling

needDatagrams

as

the

basic

building

block:Robustnessself-adaptive

nature

of

dynamic

routing

facilitatedthe

growthdynamic

routing

and

datagram

delivery

gohand-in-handperiodic

routing

updates:

“are

you

still

there”silent

assumption:

existing

parts

may

fail,

newparts

mayappear

any

time

changes

considered

the

norm

ratherthan

exceptionstrades

off

optimal

link

usage

(e.g.

header

overhead,

update

overhead)

for

system

robustness“Unintended

consequence”

?In

a

casual

conversation

Noel

Chiappa

said,[without

DoD’s

Internet

research

initiative]

“Perhaps

we’dhave

discovered

computer

networks

eventually,

but

I

haveno

idea

when;

...

It’s

also

unclear

if

we’d

have

the

kind

ofnetwork

we

do

if

it

hadn’t

been

intended

for

such

a

use.“A

spirit

of

intense

robustness,

and

the

ability

to

keep

goingno

matter

what,

has

been

part

of

the

‘Internet

ethic’

sinceday

one,

and

it

is

due

in

part

to

the

rather

severe

operationenvironment

for

which

it

was

originally

intended.

Thisextremely

monolithic

nature

of

the

Internet

is

one

of

thethings

which

is

making

it

hostile

to

control,

and

perhaps

thatis

in

some

part

due

to

the

original

goals

of

the

network.”“Why

a

tougher

system?”things

do

go

wrong

from

time

to

time,

despite

allthe

honest

efforts

to

prevent

themHave

a

guess

on

how

often

network

outage

happens?Get

worse

as

the

system

growslarger“What

sort

of

changes

would

be

helpful

in

nextgeneration

networks? Of

course

higher

data

rateand

lower

cost

are

desirable,

but

of

allparameters

I

would

opt

for

greater

emphasis

onrobustness.”

Paul

Baran,

1977How

the

Internet

looks

like

todayNo

longer

the

same

as

20

years

agoA

lot

biggerA

lot

more

usersA

lot

more

useful,

a

lot

more

valuableless

robust,

less

adaptive,

and

less

connected

...Effectively

we

were

out

of

IPv4

address

spacesome

years

agomost

users

are

connected

via

Network

AddressTranslator

(NAT)

nowNAT:

a

feature

or

a

problem?“NAT

solves

the

address

exhaustion

problem,

and

even

brings

a

benefit

of

morecontrol,

more

security”NATs

broke

a

number

of

existing

protocols

and

applications

which

were

built

on

theassumption

of

IPaddress

being

globally

uniqueLost

ability

to

support

new

peer-to-peer

applicationsend-to-end

packet

delivery

path

becomes

a

concatenation

of

NATboxes

effectively

a

virtual

circuitInternetNATNATNATLaterNAT

comerNATNATNATNATNATNATFacts

versus

fairy

stories…Over

time

the

original

architecture

has

eroded...Entropy

(delay)

that

happens

to

all

large

systems?To

restore

IP

architecture:

moving

to

IPv6fixes

the

address

exhaustion

problemWhy

IPv6

has

not

been

widely

deployed:

a

“wedo

not

need

it”

group

going

around

telling

fairystoriesNAT

lovers:

cheaper

&

easier

than

moving

tov6betting

against

address

exhaustion,

“IPv4

addresseswould

last

us

till

2010”,

or

even2020How

soon,

really?How

Soon?When

do

we

run

out

IPv4

addresses?NAT

assures

you

never

"run

out",

but

end

up

with

afragmented

InternetIf

IPv6

needs

to

be

deployed:

better

sooner

thanlaterWith

exponential

growth

of

the

net,

a

problem

ignoredis

twice

as

hard

next

year,

fixing

it

is

twice

as

costly“Wait

&

watch

for

next

couple

years”:

4

times

ashardandcostlyTo

wrap

upThe

datagram-based

IP

architecture

has

beenan

enabler

for

the

net’s

explosive

growthThe

net

needs

to

move

to

IPv6

quickly

to

stopthe

structural

erosion

and

enable

future

growth- the

fact

that

the

Internet

has

not

collapsed

yet

does

notmean

IPv4

is

OK

and

will

lastIP6

fixes

the

address

exhaustion

problem,

butthe

deployment

wont

be

cheap

or

easy主要内容网络概述Internet的发展和成功经验计算机网络技术的历史回顾国际高速计算机网络研究计划中国高速计算机网络研究计划国际高速信息网络技术研究计划1992年美国政府的“国家信息基础设施NII”1993年西方七国的“全球信息基础设施GII”美国NII组成部分“高性能计算和通信HPCC”NGI

和vBNSInternet

2

和AbileneTransPAC、APAN、STAR

TAPCANARIE

和CA*

net3NGI:美国下一代Internet研究计划美国总统和副总统宣布启动NGI(1996.10.10)保证美国的重要利益保持技术领先,创造更多的就业和市场机会NGI

的三个主要目标:先进网络技术的实验研究下一代网络测试床革命性的应用政府协调:计算机、信息和通信协调办公室CCIC可访问的Web站点:;NGI的进展:NGI

实现计划(1998年2月)NGI

概念文章(1997年7月)NGI

目标1:先进网络技术的实验研究网络工程规划和模拟;监视;集成;数据传递;网络管理;动态和自适应的网络服务质量(端到端)服务质量体系结构;允许控制,计费和优先权;可观察和控制的API;Drill

Down技术安全用户用安全和公平的方法服务网络资源;优越的网络管理;网络内部的监视;游动/远程访问;公钥基础设施NGI

目标2:下一代网络测试床开发下一代网络测试床,用比现在Internet快100倍以上的速度连接至少100个大学和国家研究实验室以1997年1.54Mbps计,10个连接点速度达到比现在Internet快1000倍端到端连接速度达到100Mbps~1GbpsNGI

目标2包括高性能连接:开发广域网结构,用100+Mbps速度连接100个广域点下一代网络技术和超高性能连接:开发超高速交换和传输技术,用1+Gbps速度连接10个以上的局域点主要策略:协调建立一个高性能的协作网络利用现有的网络试验床:vBNS,ESnet,

NREN评价标准:连接点的数量,端到端的性能支持目标1的研究,支持目标3的应用NGI

目标3:革命性的网络应用开发今天Internet没有,对国家重要的网络应用健康保健:远程医疗、紧急医疗响应支持教育:远程教育、数字图书馆科学研究:能源、地理系统、气象、生物国家安全:高性能全球通信、先进的信息传播环境:监测、预测、警告、响应政府:传递政府服务和信息给公民和企业突发事件:灾难响应、危机管理设计和制造:制造工程主要策略:重点研究基础性应用分布式计算应用、协同性应用vBNS

Cooperative

AgreementCompetitively

awarded

in

April

1995Established

by

the

NSF

in

order

to

ensure

the

availability

of

high

performance

networkingresources

for

the

US

Research&

Education

communityfoster

the

advancement

of

networking

technologyNSF

contributes:

program

management

and

fundingMCI

contributes:

bandwidth,

equipment,

andengineeringSan

FranciscoSan

DiegoSupercomputerCenterHoustonDenverAmeritechNAPChicagoNational

Center

forSupercomputingApplicationsClevelandSprint

NAPPerryman,

MDMFS

NAPPittsburghSupercomputingCenterAtlantaANew

York

CityvBNS

Backbone

Network

MapBostonWashington,

DCALos

AngelesCCNational

Center

forAtmosphericResearchC

ACCCCCCCCCCSeattleCCACCCJJAscendGRF

400Cisco

7507JuniperM40FOREASX-1000NAPACDS-3OC-3COC-12COC-48JSan

FranciscoNational

Center

forAtmosphericResearchSan

DiegoSupercomputerCenterHoustonDenverChicagoNational

Center

forSupercomputingApplicationsClevelandPerryman,

MDPittsburghSupercomputingCenterLos

AngelesAtlantaNew

York

CityvBNS

Backbone3Q99BostonWashington,

DCSeattlevBNS

POPDS-3OC-3COC-12COC-48Internet2UCAID(120多个大学会员)的一项研究计划University

Corporation

for

Advanced

Internet

Development形成大学试验网,开发下一代Internet

技术和应用IPv6,Multicasting,QOS以竞争方式得到NGI

计划的经费支持NGI是政府计划,Internet

2

是大学合作计划相互补充,相互依靠Internet2和NGI的合作范围NSF支持的vBNSInternet

2

将建立用于地区连接的gigaPoPInternet

2

的许多网络应用开发由NGI支持Advanced

Internet

BenefitsRicher

content

through

higher

bandwidthVideo,

audioVirtual

realityDynamic

not

staticMore

interactivity

via

minimal

delayReliable

content

delivery

through

quality

ofservice

modelInternet2

ApplicationsDeliver

qualitative

and

quantitative

improvementsin

the

conduct

of:ResearchTeachingLearningRequire

advanced

networkingVirtual

LaboratoriesInteractive

research

andinstructionReal-timeaccess

to

remotescientificinstrumentsImages

courtesy

of

theUniversity

of

MichiganVirtual

LaboratoriesReal-time

access

to

remoteinstrumentsUniversity

of

Pittsburgh,Pittsburgh

SupercomputingCenter3-D

Brain

MappingDigital

LibrariesVideo

and

audioIndianaUniversityVariationsProjectDistributed

ComputationMulti-site

databasesOld

DominionUniversityChesapeake

BaySimulationImage

courtesy

of

Old

Dominion

UniversityTeleimmersionShared

virtual

realityUniversity

of

Illinois

atChicagoVirtualTemporalBoneImages

courtesyUniv

of

Illinois-ChicagoAbileneProject

announced

14

April

1998

by

VP

GoreMost

advanced

and

far

reaching

research

andeducation

network

in

the

worldsupport

advanced

research

applicationsintegrated

advanced

network

servicesDeveloped

by

UCAIDQwest,

Nortel

and

Cisco

corporate

partnersAdvanced

native

IP

backbone

network

available

touniversities

participating

in

UCAID’s

Internet2

projectAbilene

Characteristics2.4

Gbps

(OC48)

among

gigaPoPs,

increasing

to9.6

Gbps

(OC192)Connections

at

622

Mbps

(OC12)

or

155

Mbps(OC3)IP

over

So

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论