湖南省邵阳市新宁县水庙中学2022年高二数学理期末试题含解析_第1页
湖南省邵阳市新宁县水庙中学2022年高二数学理期末试题含解析_第2页
湖南省邵阳市新宁县水庙中学2022年高二数学理期末试题含解析_第3页
湖南省邵阳市新宁县水庙中学2022年高二数学理期末试题含解析_第4页
湖南省邵阳市新宁县水庙中学2022年高二数学理期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市新宁县水庙中学2022年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.从(其中)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在轴上的双曲线方程的概率为(

)A.

B. C. D.参考答案:B2.若函数的图象如图所示,则a:b:c:d=()A.1:6:5:(﹣8) B.1:6:5:8 C.1:(﹣6):5:8 D.1:(﹣6):5:(﹣8)参考答案:A【考点】函数的图象.【分析】根据图象可先判断出分母的表达式的零点,然后利用特殊点关系式即可.【解答】解:由图象可知x≠1,5,∴分母上必定可分解为k(x﹣1)(x﹣5)=ax2﹣bx+c,可得a=k,b=6k,c=5k,∵在x=3时有y=2,即2=,∴d=﹣8k∴a:b:c:d=1:6:5:(﹣8),故选:A.3.对于满足方程的一切实数、,不等式恒成立,则实数的取值范围是

(

)A.

B.

C.

D.

参考答案:C4.已知等差数列{an}的公差d≠0,若a5、a9、a15成等比数列,那么公比为(

)A

B

C

D参考答案:C5.函数的图象大致为()A. B.C. D.参考答案:B函数的定义域为,排除选项A;当时,,且,故当时,函数单调递减,当时,函数单调递增,排除选项C;当时,函数,排除选项D,选项B正确.选B.点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.

6.如图所示是一个循环结构的算法,下列说法不正确的是(

)A.①是循环变量初始化,循环就要开始B.②为循环体C.③是判断是否继续循环的终止条件D.输出的S值为2,4,6,8,10,12,14,16,18参考答案:D【考点】循环结构;程序框图.【专题】图表型;算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量s的值,结合各部分的功能即可得出答案.【解答】解:这个程序框图中,①是循环变量初始化,循环将要开始,正确;②为不满足条件n>10时执行的语句,是循环体,故B正确;③是判断是否继续循环的终止条件,正确;④满足执行程序框图,可得i=1s=2,输出2,i=2s=4,输出4,i=3s=6,输出6,i=4s=8,输出8,i=5s=10,输出10,i=6s=12,输出12,i=7s=14,输出14,i=8s=16,输出16,i=9s=18,输出18,i=10s=20,输出20,i=11满足条件i>10,退出循环.故D错.故选:D.【点评】本题考查的知识点是程序框图,循环结构,循环语句,程序功能的判断,是对算法知识点的综合考查,熟练掌握算法的基础知识是解答本题的关键.7.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框内应填入的条件是(

)A.<4

B.>4

C.<5 D.>5参考答案:B8.公差不为零的等差数列{an}中,2a3﹣a72+2a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=()A.2 B.4 C.8 D.16参考答案:D【考点】等差数列与等比数列的综合. 【专题】等差数列与等比数列. 【分析】由2a3﹣a72+2a11=0结合性质求得a7,再求得b7,由等比数列的性质求得b6b8. 【解答】解:由等差数列的性质:2a3﹣a72+2a11=0得: ∵a72=2(a3+a11)=4a7, ∴a7=4或a7=0, ∴b7=4, ∴b6b8=b72=16, 故选:D. 【点评】本题考查学生灵活运用等差数列的性质及等比数列的性质化简求值,是一道基础题.9.等于(

)A.6

B.5

C.4

D.3参考答案:D10.对实数和,定义运算“”:设函数若函数的图像与轴恰有三个公共点,则实数的取值范围是

) A.

B.

C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若一个三位自然数的十位上的数字最大,则称该数为“凸数”(如,).由组成没有重复数字的三位数,其中凸数的个数为_____个.参考答案:8【分析】根据“凸数”的特点,中间的数字只能是3,4,故分两类,第一类,当中间数字为“3”时,第二类,当中间数字为“4”时,根据分类计数原理即可解决.【详解】当中间数字为“3”时,此时有两个(132,231),当中间数字为“4”时,从123中任取两个放在4的两边,有种,则凸数的个数为个.12.有红心1,2,3和黑桃4,5这5张扑克牌,现从中随机抽取一张,则抽到的牌为红心的概率是

.参考答案:

略13.幂函数的递增区间是__________.参考答案:略14.若椭圆的离心率为,一个焦点恰好是抛物线的焦点,则椭圆的标准方程为

.参考答案:15.已知,若,且1<m<2,则m=

.参考答案:或16.已知,且则=

参考答案:略17.由1,2,3,4可以组成

个没有重复数字的正整数.参考答案:64【考点】计数原理的应用.【分析】根据数位的个数分为4类,根据分类计数原理得到结果.【解答】解:根据数位的个数分为4类,故A41+A42+A43+A44=64.故答案为:64.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)若复数是纯虚数(是虚数单位),则实数m的值。参考答案:,m=219.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求乙以4比1获胜的概率;(2)求甲获胜且比赛局数多于5局的概率.参考答案:(1)(2)【分析】(1)记“乙以4比1获胜”为事件A,,则A表示乙赢了3局甲赢了1局,且第五局乙赢,再根据n次独立重复实验中恰好发生k次的概率计算公式求得的值。(2)利用n次独立重复实验中恰好发生k次的概率计算公式求得甲以4比2获胜的概率,以及甲以4比3获胜的概率,再把这2个概率值相加,即得所求。【详解】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是,记“乙以4比1获胜”为事件A,则A表示乙赢了3局甲赢了一局,且第五局乙赢,∴.(2)记“甲获胜且比赛局数多于5局”为事件B,则B表示甲以4比2获胜,或甲以4比3获胜.因为甲以4比2获胜,表示前5局比赛中甲赢了3局且第六局比赛中甲赢了,这时,无需进行第7局比赛,故甲以4比2获胜的概率为.甲以4比3获胜,表示前6局比赛中甲赢了3局且第7局比赛中甲赢了,故甲以4比3获胜的概率为,故甲获胜且比赛局数多于5局的概率为.【点睛】问题(1)中要注意乙以4比1获胜不是指5局中乙胜4局,而是要求乙在前4局中赢3局输一局,然后第5局一定要赢,要注意审题。问题(2)有“多于”这种字眼的,可以进行分类讨论。20.已知函数f(x)=xlnx+2,g(x)=x2﹣mx.(1)求f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)若存在使得mf'(x)+g(x)≥2x+m成立,求实数m的取值范围.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;(2)求出f'(x)=lnx+1,推出单调区间,然后求解函数的最小值.(3)存在x0∈[,e]使得mf'(x)+g(x)≥2x+m成立,转化为存在x0∈[,e]使得m≤()max成立,令k(x)=,x∈[,e],求出函数的导数,通过判断导函数的符号,求出最大值,【解答】解:(1)由已知f(1)=2,f′(x)=lnx+1,则f′(1)=1,所以在(1,f(1))处的切线方程为:y﹣2=x﹣1,即为x﹣y+1=0;(2)f'(x)=lnx+1,令f'(x)>0,解得x>;令f'(x)<0,解得0<x<,∴f(x)在(0,)递减,在(,+∞)递增,若t≥,则f(x)在[t,t+2]递增,∴f(x)min=f(t)=tlnt+2;若0<t<,则f(x)在[t,)递减,在(,t+2]递增,∴f(x)min=f()=2﹣.(3)若存在x0∈[,e]使得mf'(x)+g(x)≥2x+m成立,即存在x0∈[,e]使得m≤()max成立,令k(x)=,x∈[,e],则k′(x)=,易得2lnx+x+2>0,令k'(x)>0,解得x>1;令k'(x)<0,解得x<1,故k(x)在[,1)递减,在(1,e]递增,故k(x)的最大值是k()或k(e),而k()=﹣<k(e)=,故m≤.【点评】本题考查函数的导数的应用,函数的最值以及函数的单调区间的求法,考查转化思想以及计算能力.21.在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.(1)如果直线l过抛物线的焦点,求的值;(2)如果=-4,证明直线l必过一定点,并求出该定点.参考答案:略22.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.(Ⅰ)计算甲班7位学生成绩的方差s2;(Ⅱ)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.参考公式:方差,其中.参考答案:【考点】极差、方差与标准差;茎叶图.【专题】概率与统计.【分析】(Ⅰ)利用平均数求出x的值,根据所给的茎叶图,得出甲班7位学生成绩,做出这7次成绩的平均数,把7次成绩和平均数代入方差的计算公式,求出这组数据的方差.(Ⅱ)设甲班至少有一名学生为事件A,其对立事件为从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生;先计算出从成绩在90分以上的学生中随机抽取两名学生的所有抽取方法总数,和没有甲班一名学生的方法数目,先求出从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生的概率,进而结合对立事件的概率性质求得答案【解答】解:(I)∵甲班学生的平均分是85,∴.…∴x=5.…则甲班7位学生成绩的方差为s2==40.…(II)甲班成绩在90(分)以上的学生有两名,分别记为A,B,…乙班成绩在90(分)以上的学生有三名,分别记为C,D,E.…从这五名学生任意抽取两名学生共有10种情况:(A,B)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论