版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水市魁星庄中学高二数学理上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数3-4i的虚部是(A)4
(B)-4
(C)4i
(D)-4i参考答案:B2.观察下列各式:=3125,=15625,=78125,…,则的末四位数字为
A.3125
B.5625
C.0625 D.8125参考答案:D略3.抛物线y=﹣4x2的焦点坐标是()A.(0,﹣1) B.(﹣1,0) C.(0,﹣) D.(﹣,0)参考答案:C【考点】抛物线的简单性质.【分析】将抛物线方程化为标准方程,确定p的值,即可得到结论.【解答】解:抛物线y=﹣4x2可化为∵2p=,∴∴抛物线y=﹣4x2的焦点坐标是故选C.4.设数列的通项公式为,则(
)
A.153
B.210
C.135
D.120参考答案:A略5.定义在上的奇函数,当时,,则关于的函数的所有零点之和为(
)
A.
B.
C. D.参考答案:B6.已知函数为偶函数,其图象与直线y=1的某两个交点横坐标为、,若的最小值为π,则( )A. B. C. D.参考答案:A由已知函数为偶函数,可得,因为函数的最大值为1,所以的最小值为函数的一个周期,所以其周期为,即,所以,故选A.
7.已知x,y满足约束条件,则z=2x+y的最大值为()A.1 B.2 C.3 D.4参考答案:D【考点】简单线性规划.【专题】计算题;数形结合;函数思想;方程思想;不等式的解法及应用.【分析】作出可行域,平移目标直线可得取最值时的条件,求交点代入目标函数即可.【解答】解:(如图)作出可行域,当目标直线过直线x+y﹣2=0与直线y=0的交点A(2,0)时取最大值,故最大值为z=2×2+0=4故选:D.【点评】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.8.已知定义在上的函数及其导函数的图象如下图所示,则函数的减区间为(
)A.(0,1),(4,+∞)
B.(-∞,1)
C.(1,+∞)
D.(-∞,0),(1,4)参考答案:D9.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是(
)A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合参考答案:D10.i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i参考答案:C【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=,故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.给出以下四个问题:①输入一个数x,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数f(x)=的函数值.其中需要用选择结构来描述算法的有________个.参考答案:312.在梯形ABCD中,AB⊥BC,AD∥BC,BC=2AD=2AB=4,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为
.参考答案:【考点】棱柱、棱锥、棱台的体积.【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可得到答案.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为2,高为4的圆柱,挖去一个相同底面高为2的倒圆锥,几何体的体积为:=.故答案为:.13.若四棱柱的底面是边长为1的正方形,且侧棱垂直于底面,若与底面成60°角,则二面角的平面角的正切值为
.参考答案:
14.设异面直线l1,l2的方向向量分别为=(1,1,0),=(1,0,﹣1),则异面直线l1,l2所成角的大小为.参考答案:【考点】异面直线及其所成的角.【分析】求出cos<>,由此能求出异面直线l1,l2所成角的大小.【解答】解:∵异面直线l1,l2的方向向量分别为,∴cos<>===,∴<>=.∴异面直线l1,l2所成角的大小为.故答案为:.15.从甲、乙、丙、丁四个人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为
▲
.参考答案:从4人中任选2人,共有,而甲乙两人有且只有一个被选取的方法数为,概率为.
16.如图,平面平面,且于,于,,,点是平面内不在上的一动点,记与平面所成角为,与平面所成角为。若,则的面积的最大值是
(
)BA.6
B.12
C.18
D.24参考答案:B略17.观察下列等式:①cos2α=2cos2α﹣1;②cos4α=8cos4α﹣8cos2α+1;③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1.可以推测m+n+p=
.参考答案:162【考点】F1:归纳推理.【分析】本小题考查三角变换、类比推理等基础知识,考查同学们的推理能力等.观察等式左边的α的系数,等式右边m,n,p的变化趋势,我们不难归纳出三个数的变化规律,进而得到结论.【解答】解:因为2=21,8=23,32=25,…,128=27所以m=29=512;因为各项的系数和为1,所以n=﹣400,p=50,所以m+n+p=512﹣400+50=162.故答案为:162【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知P是平行四边形ABCD所在平面外一点,M,N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4,PA=4,求异面直线PA与MN所成的角的大小.参考答案:【考点】直线与平面平行的判定;异面直线及其所成的角.【分析】(1)取PD中点Q,连AQ、QN,根据四边形AMNQ为平行四边形可得MN∥AQ,根据直线与平面平行的判定定理可证得EF∥面PAD;(2)根据MN∥AQ,则∠PAQ即为异面直线PA与MN所成的角,然后解三角形PAQ,可求出此角即可.【解答】(1)证明:取PD中点Q,连AQ、QN,则AM∥QN,且AM=QN,∴四边形AMNQ为平行四边形∴MN∥AQ又∵AQ在平面PAD内,MN不在平面PAD内∴MN∥面PAD;(2)解:∵MN∥AQ∴∠PAQ即为异面直线PA与MN所成的角∵MN=BC=4,PA=4,∴AQ=4,根据余弦定理可知cos∠AQD+cos∠AQP=0即解得x=4在三角形AQP中,AQ=PQ=4,AP=4∴cos∠PAQ==即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°.19.(本小题满分10分)求以椭圆的顶点为焦点,焦点为顶点的双曲线方程,并求出其离心率和渐近线方程。参考答案:
略20.某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.(1)写出的分布列;(2)求数学期望.
参考答案:解:(1)的所有取值为则有
所以其分布列为ξ051015202530P(2).略19.(本小题满分12分)ks5u某次会议有6名代表参加,A、B两名代表来自甲单位,C、D两名代表来自乙单位,E、F两名代表来自丙单位,现随机选出两名代表发言,问:(1)代表A被选中的概率是多少?(2)选出的两名代表“恰有一名来自乙单位或两名都来自丙单位”的概率是多少?参考答案:22.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有>0(1)解不等式;(2)若f(x)≤t2﹣2at+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.参考答案:解:(1)任取x1,x2∈[﹣1,1]且x1<x2,则∴f(x2)>f(x1),∴f(x)为增函数∵∴∴,即不等式的解集为.(2)由于f(x)为增函数,∴f(x)的最大值为f(1)=1,∴f(x)≤t2﹣2at+1对x∈[﹣1,1],a∈[﹣1,1]恒成立,等价于t2﹣2at+1≥1对任意的a∈[﹣1,1]恒成立,即t2﹣2at≥0对任意的a∈[﹣1,1]恒成立.把y=t2﹣2at看作a的函数,由于a∈[﹣1,1]知其图象是一条线段.∵t2﹣2at≥0对任意的a∈[﹣1,1]恒成立∴∴解得t≤﹣2或t=0或t≥2.考点:函数恒成立问题;函数奇偶性的性质.专题:综合题.分析:(1)由f(x)是奇函数和单调性的定义,可得f(x)在[﹣1,1]上是增函数,再利用定义的逆用求解;(2)先由(1)求得f(x)的最大值,再转化为关于a的不等式恒成立问题求解.解答:解:(1)任取x1,x2∈[﹣1,1]且x1<x2,则∴f(x2)>f(x1),∴f(x)为增函数∵∴∴,即不等式的解集为.(2)由于f(x)为增函数,∴f(x)的最大值为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度公司股东内部关于企业社会责任履行共识协议3篇
- 二零二五农村合作建房工程招投标及合同管理协议
- 二零二五年度环保设施项目公司转让合同3篇
- 2025年度农村公路养护与社区文化活动合同2篇
- 2025年度外卖配送公司送餐服务优化合同3篇
- 2025年度公司与公司签订的智慧城市建设合作协议3篇
- 2025年度绿色养殖产业链合作协议书-养羊篇3篇
- 2025年度公司车辆充电设施建设及使用协议3篇
- 二零二五年度特色水果种植基地果园土地承包合同3篇
- 2025年度农村土地流转承包合同(农产品品牌推广)
- 设备管理的设备绩效绩效指标和评价体系
- 智能安防智慧监控智慧管理
- 中心学校2023-2024学年度六年级英语质量分析
- 2024年甘肃兰州生物制品研究所有限责任公司招聘笔试参考题库附带答案详解
- 保单检视报告活动策划
- 《学前教育研究方法》课件
- 室外消火栓安装工程检验批质量验收记录表
- AI在药物研发中的应用
- 建立信息共享和预警机制
- 美容外外科管理制度
- 苯-甲苯分离精馏塔化工原理课程设计
评论
0/150
提交评论