版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市低田中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.数列的前项和为,若,则(
)A.
B.
C.
D.参考答案:C略2.
____.参考答案:略3.要完成下列3项抽样调查:①从某班10名班干部中随机抽取3人进行一项问卷调查.②科技报告厅的座位有60排,每排有50个,某次报告会恰好坐满听众,报告会结束后,为了解听众意见,需要随机抽取30名听众进行座谈.③某高中共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了解教职工的文化水平,拟随机抽取一个容量为40的样本.较为合理的抽样方法是()A.①简单随机抽样,②分层抽样,③系统抽样B.①简单随机抽样,②系统抽样,③分层抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样参考答案:B【考点】简单随机抽样.【专题】计算题;整体思想;定义法;概率与统计.【分析】观察所给的四组数据,根据四组数据的特点,把所用的抽样选出来①简单随机抽样,②系统抽样,③分层抽样.【解答】解:观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选:B.【点评】简单随机抽样是一种最简单、最基本的抽样方法.常用的简单随机抽样方法有抽签法和随机数法.简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的.4.如图是某一几何体的三视图,则这个几何体的体积为(
)A.4
B.8
C.16
D.20参考答案:C5.一个正整数数表如表所示(表中下一行中数的个数是上一行中数的个数的2倍),则第9行中的第6个数是()第1行1第2行2
3第3行4
5
6
7……A.132 B.261 C.262 D.517参考答案:B【考点】归纳推理.【分析】先根据题意可知第n行有2n﹣1个数,此行最后一个数的为2n﹣1,求出第8行的最后一个数,从而求出所求.【解答】解:根据题意可知第n行有2n﹣1个数,此行最后一个数的为2n﹣1.那么第8行的最后一个数是28﹣1=255,该数表中第9行的第6个数是261,故选:B.6.当时,下面四个函数中最大的是()。A.
B.
C.
D.参考答案:C7.若是奇函数,则实数的值为
.参考答案:略8.从装有3个红球和2个黑球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个黑球与都是红球B.至少有1个黑球与都是黑球C.至少有1个黑球与至少有1个红球D.恰有1个黑球与恰有2个黑球参考答案:A【考点】互斥事件与对立事件.【专题】计算题;转化思想;综合法;概率与统计.【分析】A是对立事件;B和不是互斥事件;D是互斥但不对立事件.【解答】解:从装有3个红球和2个黑球的口袋内任取2个球,在A中:至少有1个黑球与都是红球,不能同时发生,也不能同时不发生,故A是对立事件;在B中,至少有1个黑球与都是黑球,能够同时发生,故B不是互斥事件,更不是对立事件;在C中,至少有1个黑球与至少有1个红球,能够同时发生,故C不是互斥事件,更不是对立事件;在D中,恰有1个黑球与恰有2个黑球,不能同时发生,但能同时不发生,故D是互斥但不对立事件.故选:A.【点评】本题考查互斥事件与对立事件的判断,是基础题,解题时要认真审题,注意对立事件的合理运用.9.已知函数的部分图象如图所示,则函数的解析式为(
)A.
B.C.
D.参考答案:A10.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱,正视图是边长为2的正方形,该三棱柱的侧视图面积为
(
)A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数满足对任意成立,则a的取值范围是
.
参考答案:略12.一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是
.参考答案:试题分析:由题意,考虑小球与正四面体的一个面相切时的情况,易知小球在面上最靠近变得切点的轨迹仍为正三角形,正四面体的棱长为,故小三角形的边长为,小球与一个面不能接触到的部分的面积为,所以几何体的四个面永远不可能接触到容器的内壁的面积是.13.在半径为2的圆中,圆心角为所对的弧长是
。参考答案:略14.二次函数上递减,则a的取值范围是
.参考答案:15.有4种不同的蔬菜,从中选出3种,分别种植在不同土质的3块土地上进行实验,则不同的种植方法共
▲
种.参考答案:24;
16.若为偶函数,当时,,则当时,
▲
.参考答案:17.用100米扎篱笆墙的材料扎一个矩形羊圈,欲使羊的活动范围最大,则应取矩形长
米,宽
米.参考答案:25,25.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一船由甲地逆水驶至乙地,甲、乙两地相距S(km),水的流速为常量a(km/h),船在静水中的最大速度为b(km/h)
(b>2a),已知船每小时的燃料费用(单位:元)与船在静水中的速度v(km/h)的平方成正比,比例系数为k,问:(1)船在静水中的航行速度v为多少时,全程燃料费用最少?(2)若水速a=8.4km/h,船在静水中的最大速度为b=25km/h,要使全程燃料费用不超过40kS元,求船在静水中的航行速度v的范围。参考答案:19.已知函数是奇函数,f(x)=lg(10x+1)+bx是偶函数.(1)求a+b的值.(2)若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.(3)设,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.参考答案:【考点】函数恒成立问题;函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)由条件利用函数的奇偶性的性质求得a、b的值,可得a+b的值.(2)由条件利用函数的单调性求得3t2﹣2t>k,t∈[0,+∞)恒成立,求得3t2﹣2t的最小值,可得k的范围.(3)由题意可得存在x∈(﹣∞,1],使不等式g(x)>lg(10a+10)成立,求得g(x)的最大值,可得a的范围.【解答】解:(1)由g(0)=0得a=1,则,经检验g(x)是奇函数.由f(﹣1)=f(1)得,则,经检验f(x)是偶函数,∴.(2)∵,且g(x)在(﹣∞,+∞)单调递增,且g(x)为奇函数.∴由g(t2﹣2t)+g(2t2﹣k)>0恒成立,得g(t2﹣2t)>﹣g(2t2﹣k)=g(﹣2t2+k),∴t2﹣2t>﹣2t2+k,t∈[0,+∞)恒成立,即3t2﹣2t>k,t∈[0,+∞)恒成立,令F(x)=3t2﹣2t,在[0,+∞)上F(x)的最小值为,∴.(3)h(x)=lg(10x+1),h(lg(10a+9))=lg[10lg(10a+9)+1]=lg(10a+10),则由已知得,存在x∈(﹣∞,1],使不等式g(x)>lg(10a+10)成立,而g(x)在(﹣∞,1]单增,∴,∴,∴.又,∵,∴,∴.【点评】本题主要考查函数的奇偶性的性质,函数的单调性,函数的恒成立与能成立问题,属于中档题.20.(12分)己知圆C:(x-xo)2+(y-y0)2=R2(R>0)与y轴相切,圆心C在直线l:x-3y=0上,且圆C截直线m:x-y=0所得的弦长为2,求圆C方程.参考答案:圆C:(x-xo)2+(y-y0)2=R2(R>0)与y轴相切,则|x0|=R………(1)
圆心C在直线l:x-3y=0上,则x0=3y0
……(2)
圆C截直线m:x-y=0所得的弦长为2,则把(1)(2)代入上式消去x0,y0得:R=3,则x0=3,y0=1或x0=-3,y0=-1故所求圆C的方程为:(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=921.(本题12分)已知不等式的解集为A,关于的不等式的解集为B,全集U=R,求使的实数的取值范围.参考答案:的取值范围是22.已知:函数f(x)=+lg(3x﹣9)的定义域为A,集合B={x|x﹣a<0,a∈R}.(1)求:集合A;(2)求:A∩B.参考答案:【考点】交集及其运算;函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新型极地建筑材料研究-洞察分析
- 私募基金市场竞争格局-洞察分析
- 2025【合作合同】矿山合作开发合同范本
- 2025法人授权委托书管理及合同签订的评审制度
- 2024年消防培训与演练组织服务合同书3篇
- 移动媒体传播策略-洞察分析
- 2024年度国有企业临时工劳动派遣合同范本3篇
- 水分平衡与神经递质-洞察分析
- 血管病变预防机制研究-洞察分析
- 2024年度新能源汽车充电设施运营担保付款保证合同正规范本3篇
- 人事入转调离分析报告
- 管道工安全培训课件
- 胃癌的早期预防和筛查
- 汽车安全与法规 (第3版) 课件 第1-3章 汽车安全技术概述、汽车安全技术法规与标准、汽车主动安全性
- 公路工程定额应用-公路工程定额的组成
- 保险行业风控规则与制度培训
- 2022-2023学年佛山市禅城区六年级数学第一学期期末达标测试试题含解析
- 《广联达培训教程》课件
- 扬州育才小学2023-2024六年级数学上册期末复习试卷(一)及答案
- 函数的单调性说课课件-2023-2024学年高一上学期数学人教A版(2019)必修第一册
- 软件系统实施与质量保障方案
评论
0/150
提交评论