版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BSSMWorkshop
PARTII
Thesin2ψMethodUsingLaboratoryX-Rays
JudithShackleton
SchoolofMaterials,UniversityofManchesterBSSMWorkshop
PARTII
Thesin2Thesin2ψMethod
WhatareWeMeasuring?WemeasuretheELASTICStrain.WecandetermineMagnitudeofthestress,ItsdirectionItsnature CompressiveortensileWeusetheplanesofthecrystallatticeasanatomicscale“straingauge”Thesin2ψMethod
WhatareWeThesin2ψMethod
HowDoesitWork?WemeasureSTRAIN()notSTRESS()WeCALCULTESTRESSfromtheSTRAIN&theELASTICCONSTANTSWeusetheplanesd{hkl},ofthecrystallatticeasastraingaugeWecanmeasurethechangeind-spacing,dStrain==d/dThesin2ψMethod
HowDoesitChangesind-spacing
withStressConsiderabarwhichisintensionThed-spacingsoftheplanesnormaltotheappliedstressincrease,asthestressistensileThed-spacingsoftheplanesparalleltotheappliedstressdecrease,duetoPoissonstrainChangesind-spacing
withStrMeasuringElastic&
Inelastic
StrainPrimarilywearemeasuringmacrostressesThisisauniformdisplacementofthelatticeplanesThesecauseaVERYSMALLshiftintheposition,theBraggangle2,ofthereflection&wecanmeasurethis(OnlyJust!!)Inelasticstressescausepeakbroadening,whichcanbemeasured.Thisisanextensivesubject,notcoveredhere.MeasuringElastic&
InelastiWhichMaterialsCan
WeMeasure?Worksonanypoly-crystallinesolidwhichgivesahighangleBraggreflectionMetalsCeramics(noteasy!)Multi-phasematerialsNotusuallyappliedtopolymers,asnosuitablereflections,canaddametallicpowder,reportedintheliteratureWhichMaterialsCan
WeMeasurWhyusethesin2
Method
TheAdvantagesMostImportantAstressfreed-spacingisNOTrequiredforthebi-axialcasewhichisalmostalwaysusedOtheradvantagesLowcost(comparedwithneutrons&synchrotrons,butnotholedrilling)Non-destructive,unlikeholedrillingEasytodo&fairlyfoolproof(ifyouarecareful!!)Whyusethesin2
Method
TheDisadvantagesMostImportantSurfacemethodonly,X-raybeampenetrationdepth10to20microns,atbestFordepthprofilingmustelectro-polish,gives1-1.5mmOtherDisadvantagesAffectedbygrainsize,texture(preferredorientation)&surfaceroughnessDoesn’tworkonamorphousmaterials(obviously!!)DisadvantagesMostImportantBasicTheoryConsideraunitcube(quiteabigone!)embeddedinacomponentNotation,(ij)thestresscomponentactingonfaceiindirection(paralleltoaxis)jBasicTheoryConsideraunitcuBasicTheoryThenormalstressesactnormaltothecubefaces&thetwosubscriptsarethesamee.g..(22)Theshearstresses(twistingforces)actparalleltothecubefaces&thetwosubscriptsaredifferente.g.(31)orinthegeneralcase(ij)Wemeasurenormalstresses&shearstresses,butthat’snotwhatwewant,wedon’tgetalloftheinformation!Why??BasicTheoryBasicTheory
NormalStressesFromelastictheoryofisotropicmaterials,the3normalstrainsaregivenby, 11=1 [11-(22+33)]
E 22=1 [22-(33+11)]
E 33=1 [33-(11+22)]
EThestraininanydirectionisafunctionofthestressintheothers!!.Ideally,weshouldmeasuremorethanonedirectionBasicTheory
NormalStressesFrPrincipalStressesWeshouldmeasuremorethanonedirectiontogetacompletepictureofthestressinthecomponentIfwemeasure3directionsormorewecancalculatethePRINCIPALSTRESSESS,thesearethedirectionsonwhichnoshearstressactsWedothisbyrotatingthesamplethroughanangle,initsownplane,exactdetails&diagramslaterPrincipalStressesWeshouldmeHowtheSin2Method
Works
Samplein“BraggCondition”Diffractionvector,normaltosamplesurfacednWemeasurethed-spacingwiththeangleofincidence()&theangleofreflectionoftheX-raybeam(withrespecttothesamplesurface)equal.Theseplanesareparalleltothefreesurface&unstressed,butnotunstrainedAlsocalledfocussedgeometryHowtheSin2Method
Works
SaHowtheSin2Method
WorksDiffractionvector,titledwithrespecttosamplesurfaceTiltthesamplethroughanangleandmeasurethed-spacingagain.Theseplanesarenotparalleltothefreesurface.Theird-spacingischangedbythestressinthesample.dDefocusedgeometryHowtheSin2Method
WorksDifHowtheSin2Method
WorksWetiltthesamplethroughananglepsi,tomeasuremagnitudethenormal&shearstressesWeusearangeofvaluesof(calledoffsets)forexample,from0to45instepsof5NEVERusethe“DoubleExposureMethod”whichusesjustoneoffsets.Notenoughdatapoints!Werotatethethesamplethroughanangle,todeterminethedirectionsoftheprinciplestressesHowtheSin2Method
WorksWeNoStressFreed-Spacing
Needed
TheApproximationThedepthofpenetrationoftheX-raybeaminthesampleissmall,typically<20Wecansaythatthereisnostresscomponentperpendiculartothesamplesurface,thatis33=0Wecanusethed-spacingmeasuredat=0asthestressfreed-spacingThisisthed-spacingoftheplanesparalleltothesamplesurfaceAreasonableapproximation!!Theerroris<2%,certainlylessthantryingtomakeastressfreestandard!!!NoStressFreed-Spacing
NeedTheEquationforthe
sin2
MethodThesimplestformoftheequationis, = E d-dn (1+)sin2 dnWere=StressindirectionE=Young’smodulus(GPa)=Poisson’sratio=Tiltangle(degrees)d=d-spacingmeasuredattiltangle,(Å)dn=The“stressfreed-spacing”fromourapproximation measuredat=0(Å)StrainTermTheEquationforthe
sin2MeThesin2Plot:TheResults!dnisobtainedbyextrapolatingaplotofd
(orstrain)againstsin2to=0Stressisobtainedfromthegradient,mofthesin2plot = E m (1+)Ifthed-spacingdecreases,thestressiscompressive(planespushedtogether)Ifthed-spacingincreasesthestressistensile(planespulledapart)Thesin2Plot:TheResults!Thesin2Plot:Example
WecanplotSTRAINagainstsin2&obtaintheSTRESSfromthegradientThesin2Plot:ExampleWecaThesin2Plot:ExampleAlso,wecanplotd{hkl}againstsin2&obtainthestressfromthegradient,whichisthesameonbothplotsThesin2Plot:ExampleAlso,General:Stress
DiffractometersBasicallyadaptedpowderdiffractometersCanaccommodatelarger,heaviersamplesMaximumaccessible2angleislargerUsuallyabout1652(checkthisifyoubuyone!!!)Moreaxesofrotationthanastandardpowderdiffractometer,omegaand2canmoveindependentlyGeneral:Stress
DiffractometeThereareTwoBasicTypesLaboratoryBasedSystemsFixedlocationCanusuallybeusedforotherapplications,forexamplephaseidentificationPortablesystemsDesignedspecificallyforresidualstressmeasurementsCancarriedandfixedtoalargecomponent(aircraft!)ThereareTwoBasicTypesLaborDiffractionAnglesused
inStressAnalysisDiffractionAnglesused
inStDiffractionGeometry
SummaryoftheAnglesUsedin
ResidualStressAnalysis
Two-theta(2)
TheBraggangle,anglebetweentheincident(transmitted)anddiffractedX-raybeams.Omega()TheanglebetweentheincidenceX-raybeamandthesamplesurface.Bothomegaandtwo-thetarotateinthesameplane.Phi()Theangleofrotationofthesampleaboutit’ssurfacenormal.Psi()
Anglesthroughwhichthesampleisrotated,inthesin2method.Westartatpsi=0,whereomegaishalfoftwo-thetaandadd(orsubtract)successivepsioffsets,forexample,10,20,30and40Chi()Angleofrotationabouttheaxisoftheincidentbeam.Chirotatesintheplanenormaltothatcontainingomegaandtwo-theta.Thisangleisalsosometimes(confusingly)referredtoasDiffractionGeometry
SummaryoInstrumentation
TheOmegaMethod
PortableSystemsInstrumentation
TheOmegaMethInstrumentationanExample
ofaPortableSystem,Manchester’s
Protoi-XRDInstrumentationanExample
of
DecidingWhattodo?
Weneedtodecidehowtomakeourmeasurements,weneedtomakesomechoices,WhichX-raytubetouse?Whichcrystallographicplanedowechoose?Thebestthingtodoiscopywhatsomeoneelsehasdone!YourresultswillbecomparablewiththosemadebyotherworkersManyIndustrieshave“set”methods
DecidingWhattodo?
Weneed
RadiationSelection
ChoiceofX-RayTube
(Wavelength!)
ALWAYScheckwhatotherpeoplehavedoneinthepastas,generallymeasurementsondifferentplaneswithdifferentwavelengthsarenotcomparable3Considerations(1)Dispersion(2)Fluorescence(3)Choiceofcrystallographicplane
RadiationSelection
Choiceo
RadiationSelection
ChoiceofX-RayTube
(Wavelength!)
Wecanmeasurethestressinavarietyofmaterials(i.e.ferrite,austenite,nickel,aluminium,corundumetc)usingthesamediffractometer,bychangingtheX-raytube&consequentlythewavelengthoftheX-rays.MostresidualstressdiffractometerswillhaveaselectionofX-raytubesavailableHowdowechoose?????
RadiationSelection
Choiceo
ChoiceofX-RayTube
(1)Dispersion
Weneeda2angle,ideally>1402Thechangeind-spacing,duetostrain,isverysmall,typicallyinthethirddecimalplaceThedispersionofthediffractionpatternismuchgreaterathigh2angles.Thesmallchangesind-spacingcanonlybedetectedatangles>125°2
ChoiceofX-RayTube
(1)Dis
ChoiceofX-RayTube
(1)Dispersion
AnExample
Ifwehaveareflectionfromferrite{211}at1562.UsingradiationfromachromiumanodeX-raytubeofwavelength2.2897ÅIfweintroduceastressof200MPa,givenYoung’smodulusof220GPa,whatisthechangeinthe2angle?Answer,thenew2angleis155.51Thedifferenceis0.48NOTMUCH!!!
ChoiceofX-RayTube
(1)Disp
ChoiceofX-RayTube
(2)SampleFluorescence
IftheK-1componentoftheincidentX-raybeamcausesthesampleemititsownfluorescentX-rays,DONOTUSEITX-raypenetrationdepthwillbeverysmall<5microns&NOTrepresentativeofthebulkPeaktobackgroundratiowillbeterribleMaydamagesensitivedetectors
ChoiceofX-RayTube
(2)Samp
ChoiceofX-RayTube
(3)ChoiceofCrystallographic
Plane
ForaccuratecomparisonwithotherpeoplesdataCHECKwhichplaneshavebeenusedhistorically!!MeasurementsmadeonplaneswithdifferentMiller{hkl}indicesarenotusuallycomparable.Ifthesampleistextured(preferredorientation)selectasetofplaneswithahighmultiplicity
ChoiceofX-RayTube
(3)ChoiChoiceofMeasurement
Conditions:SummaryAsksomeonewhohasexperiencewiththatparticularmaterialDon’tre-inventthewheelChooseradiationtypecarefullyAvoidX-raytubeswhichcauseK-1fluorescenceLot’sof“tricksofthetrade”seetheNPLGoodPracticeGuideforResidualStressMeasurementsusingthesin2MethodChoiceofMeasurement
ConditiDataCollection
PositioningtheSampleSamplemustbecentreofrotationofthegoniometer,mostinstrumentshavedepthgaugeorapointerBecarefulthatthesampleisasflataspossible,bentsampleswillgiveartificialshearstressesForcurvedandunevensamplesrestricttheirradiatedareaHoopdirection,Spotsize<R/4,whereR=radiusofcurvatureAxialdirection,Spotsize<R/2DataCollection
PositioningthDataCollection
Makesurethatyoucollectdataoverasufficient2range!Includethebackgroundonbothsidesofthepeak.Canbedifficultasinelasticisusuallypresent&thiscausespeakbroadening.Peakscanbeupto102Countforasufficienttimetoensureadequatestatistics,need>1000countatthetopofthepeakifpossibleDataCollection
MakesurethatDataProcessingALWAYSCHECKTHISSTAGENeedaprogramwithgoodgraphicsStagesinthedataprocessingBackgroundstrippingK-2stripping(onlyifK-2peakisvisible)LorentzPolarisationCorrectionPeakfittingtolocatemaximumCriticalStage,checktheresultsonthescreen.Avarietyofpeakmodelsareavailablemostofwhichwillwork.UsuallyuseGaussian,don’tuseparabolaGoodqualitydatacanbefittedwithmostmodels,thisisagoodtest!DataProcessingALWAYSCHECKTHHowPrecisearethe
ResultsGenerallythere’salotofscatteronsin2plots!TheerrorbarsprintedoutbymostPC’sarejustthestandarddeviationofthepointsfromthefittedlineandtendunderestimatetheerrorsLargeerrorbarsarenotnecessarilyunacceptableandaredueto,Texture,largegrainsize,poorpeakfittingetcForexample,20050MPaisquitenormalCheckthepeaksonthescreen!Valuesoflessthan50MPa,canusuallybethoughtofaszero,thisdependsontheinstrument
Toconfirmsuchlowreadingsmakeseveralmeasurements&seeiftheyallcomeoutwiththesamesign(i.e.allcompressive)HowPrecisearethe
ResultsGeInstrumentMisalignment-Omega-2misalignments-Omega-misalignments(sideinclinationmethod)Instrumentmisalignmentcauses,ShiftsinthepositionsofthereflectionsandincorrectstressvaluesThepositiveandnegativemeasurementsgivedifferentpeakpositions,thisiscalledsplittingWemustmeasureatleasttwostandardstoverifythatthemachineisworkingcorrectlyInstrumentMisalignment-OmegaI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专用建筑工具租赁合同
- 2024年建筑工程施工物资合同
- 2024年商业店铺联合租赁合同
- 2024年度加工承揽合同承揽工作内容及要求
- 【初中生物】脊椎动物-鸟和哺乳动物课件-2024-2025学年人教版(2024)生物七年级上册
- 2024年定制版:物流运输居间协议
- 2024年在线教育平台建设及内容提供合同
- 2024国际货运代理服务合同及附加条款
- 2024年废弃物处理与回收合同处理方法与环保标准
- 2024年北京市出租车指标承包经营协议
- 家政公司未来发展计划方案
- ISO28000:2022供应链安全管理体系
- 家校携手 同心共育 四年期中考试家长会 课件
- 《配电网保护分级配置及整定技术规范》
- 企业档案管理办法培训
- 《室内设计基础》课件
- 《戏剧基本常识》课件
- 侮辱罪的立案标准
- 有限空间作业审批表
- 左宗棠生平及评价
- 急性心肌梗死围手术期的安全护理
评论
0/150
提交评论