2023届辽宁省朝阳市数学高二第二学期期末学业质量监测模拟试题含解析_第1页
2023届辽宁省朝阳市数学高二第二学期期末学业质量监测模拟试题含解析_第2页
2023届辽宁省朝阳市数学高二第二学期期末学业质量监测模拟试题含解析_第3页
2023届辽宁省朝阳市数学高二第二学期期末学业质量监测模拟试题含解析_第4页
2023届辽宁省朝阳市数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,分别是椭圆C:的上下两个焦点,若椭圆上存在四个不同点P,使得的面积为,则椭圆C的离心率e的取值范围是()A. B. C. D.2.设是虚数单位,条件复数是纯虚数,条件,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.角的终边与单位圆交于点,则()A. B.- C. D.4.已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数5.若实轴长为2的双曲线上恰有4个不同的点满足,其中,,则双曲线C的虚轴长的取值范围为()A. B. C. D.6.已知命题椭圆上存在点到直线的距离为1,命题椭圆与双曲线有相同的焦点,则下列命题为真命题的是()A. B. C. D.7.复数A. B. C. D.8.现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,甲:我不坐座位号为和的座位;乙:我不坐座位号为和的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.那么坐在座位号为的座位上的是()A.甲 B.乙 C.丙 D.丁9.若函数的定义域为,则函数的定义域为()A. B. C. D.10.定义在上的函数,当时,,则函数()的所有零点之和等于()A.2 B.4 C.6 D.811.一个三位数的百位,十位,个位上的数字依次是,当且仅当时称为“凹数”,若,从这些三位数中任取一个,则它为“凹数”的概率是A. B. C. D.12.己知函数f(x)=x,1<x≤4x|x|,-1≤x≤1,则A.14 B.143 C.7二、填空题:本题共4小题,每小题5分,共20分。13.若,则________.14.记曲线与直线,所围成封闭图形的面积为,则________.15.已知是定义在上的函数,若在定义域上恒成立,而且存在实数满足:且,则实数的取值范围是_______16.正项等比数列{an}中,a1+a4+a7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某运输公司有名驾驶员和名工人,有辆载重量为吨的甲型卡车和辆载重量为吨的乙型卡车.某天需运往地至少吨的货物,派用的车需满载且只运送一次.派用的每辆甲型卡车需配名工人,运送一次可得利润元:派用的每辆乙型卡车需配名工人,运送一次可得利润元,该公司合理计划当天派用两类卡车的车辆数,可得的最大利润多少?18.(12分)已知二项式.(1)若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和.(2)若展开式中只有第6项的二项式系数最大,求展开式中的常数项.19.(12分)在直角坐标系中,直线的参数方程为(为参数),直线与直线平行,且过坐标原点,圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求直线和圆的极坐标方程;(2)设直线和圆相交于点、两点,求的周长.20.(12分)如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,∠BCD=110°,PA⊥底面ABCD,PA=4,AB=1.(I)求证:平面PBD⊥平面PAC;(Ⅱ)过AC的平面交PD于点M若平面AMC把四面体P﹣ACD分成体积相等的两部分,求二面角A﹣MC﹣P的余弦值.21.(12分)已知的展开式的各项系数之和等于的展开式中的常数项.求:(1)展开式的二项式系数和;(2)展开式中项的二项式系数.22.(10分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

求出椭圆的焦距,求出椭圆的短半轴的长,利用已知条件列出不等式求出的范围,然后求解离心率的范围.【详解】解:,分别是椭圆的上下两个焦点,可得,短半轴的长:,椭圆上存在四个不同点,使得△的面积为,可得,可得,解得,则椭圆的离心率为:.故选:.【点睛】本题考查椭圆的简单性质的应用,属于基础题.2、A【解析】

复数是纯虚数,必有利用充分条件与必要条件的定义可得结果.【详解】若复数是纯虚数,必有所以由能推出;但若,不能推出复数是纯虚数.所以由不能推出.,因此是充分不必要条件,故选A.【点睛】本题主要考查复数的基本概念以及充分条件与必要条件的定义,属于简单题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3、D【解析】

根据三角函数的定义,求得,再由余弦的倍角公式,即可求解.【详解】由题意,角的终边与单位圆交于点,则,由三角函数的定义,可得,则,故选D.【点睛】本题主要考查了三角函数的定义,以及余弦的倍角公式的化简、求值,其中解答中熟记三角函数的定义,以及余弦的倍角公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.4、A【解析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题.5、C【解析】

设点,由结合两点间的距离公式得出点的轨迹方程,将问题转化为双曲线与点的轨迹有个公共点,并将双曲线的方程与动点的轨迹方程联立,由得出的取值范围,可得出答案.【详解】依题意可得,设,则由,得,整理得.由得,依题意可知,解得,则双曲线C的虚轴长.6、B【解析】对于命题p,椭圆x2+4y2=1与直线l平行的切线方程是:直线,而直线,与直线的距离,所以命题p为假命题,于是¬p为真命题;对于命题q,椭圆2x2+27y2=54与双曲线9x2−16y2=144有相同的焦点(±5,0),故q为真命题,从而(¬p)∧q为真命题。p∧(¬q),(¬p)∧(¬q),p∧q为假命题,本题选择B选项.7、C【解析】,故选D.8、C【解析】

对甲分别坐座位号为3或4分类推理即可判断。【详解】当甲坐座位号为3时,因为乙不坐座位号为1和4的座位所以乙只能坐座位号为2,这时只剩下座位号为1和4又丙的要求和乙一样,矛盾,故甲不能坐座位号3.当甲坐座位号为4时,因为乙不坐座位号为1和4的座位,丙的要求和乙一样:所以丁只能坐座位号1,又如果乙不坐座位号为2的座位,丁就不坐座位号为1的座位.所以乙只能坐座位号2,这时只剩下座位号3给丙。所以坐在座位号为3的座位上的是丙.故选:C【点睛】本题主要考查了逻辑推理能力,考查了分类思想,属于中档题。9、B【解析】

由抽象函数的定义域,对数的真数大于零,分母不为零,列出不等式,从而求出的定义域。【详解】由题可得:,解得且,所以函数的定义域为;故答案选B【点睛】本题主要抽象函数与初等函数的定义域,属于基础题。10、D【解析】分析:首先根据得到函数关于对称,再根据对称性画出函数在区间上的图像,再根据函数与函数图像的交点来求得函数的零点的和.详解:因为故函数关于对称,令,即,画出函数与函数图像如下图所示,由于可知,两个函数图像都关于对称,两个函数图像一共有个交点,对称的两个交点的横坐标的和为,故函数的个零点的和为.故选D.点睛:本小题主要考查函数的对称性,考查函数的零点的转化方法,考查数形结合的数学思想方法.解决函数的零点问题有两个方法,一个是利用零点的存在性定理,即二分法来解决,这种方法用在判断零点所在的区间很方便.二个是令函数等于零,变为两个函数,利用两个函数图像的交点来得到函数的零点.11、C【解析】

先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解.【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有种方法,所以共有凹数8+6=14个,由古典概型的概率公式得P=.故答案为:C【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.12、B【解析】

根据分段函数的定义,结合x∈[-1,1]时f【详解】函数f(x)=故选:B.【点睛】本题主要考查了分段函数的定积分应用问题,其中解答中熟记微积分基本定理,准确计算是解得的关键,着重考查了推理与计算能力属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用二倍角公式直接计算得到答案.【详解】.【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.14、【解析】

由曲线与直线联立,求出交点,以确定定积分中的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式即可得到答案。【详解】联立,得到交点为,故曲线与直线,所围成封闭图形的面积;故答案为【点睛】本题考查利用定积分求面积,确定被积区间与被积函数是解题的关键,属于基础题。15、【解析】

由函数定义域及复合函数的关系可得,解得,设,则且,所以函数图像上存在两点关于直线对称,由与抛物线联立,解得中点在得,从而在有两不等的实数根,利用二次函数根的分布列不等式组求解即可.【详解】因为,,所以时满足;设,则且,所以函数图像上存在两点关于直线对称,令由设、为直线与抛物线的交点,线段中点为,所以,所以,而在上,所以,从而在有两不等的实数根,令,所以。【点睛】本题主要考查了二次型复合函数的性质,考查了转化与化归的能力,属于难题.16、14【解析】由题意得q2=a3+a6+a9a1+点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、安排辆甲型车,辆乙型车利润最大,最大利润元.【解析】

设甲型车辆,乙型车辆,根据题意列不等式组,画可行域,将目标函数化为斜截式,比较斜率,找到最优解,解方程组得最优解的坐标,代入目标函数即可得到.【详解】解:设甲型车辆,乙型车辆,则,即设利润为,则,化成斜截式可得,因为,由图可知,在点处取得最大值,联立解得,,所以的最大值为,所以,安排辆甲型车,辆乙型车利润最大,最大利润元.【点睛】本题考查了线性规划求最大值,属于中档题.18、(1)-1(2)180【解析】

(1)先求出的值,再求二项展开式的系数之和;(2)根据已知求出的值,再求出展开式中的常数项.【详解】(1)二项式的展开式的通项为,所以第二项系数为,第四项系数为,所以,所以.所以二项展开式的系数之和.(2)因为展开式中只有第6项的二项式系数最大,所以展开式有11项,所以令.所以常数项为.【点睛】本题主要考查二项式展开式的系数问题,考查指定项的求法,意在考查学生对这些知识的理解掌握水平.19、(1)直线的极坐标方程为.圆C的极方程为;(2).【解析】

(1)先将直线和圆的参数方程化为普通方程,进而可得其极坐标方程;(2)将直线的极坐标方程代入圆的极坐标方程,可求出关于的方程,由,即可求出结果.【详解】(I)因为直线的参数方程为(为参数),所以直线的斜率为1,因为直线与直线平行,且过坐标原点,所以直线的直角坐标方程为,所以直线的极坐标方程为因为圆C的参数方程为(为参数),所以圆C的普通方程为,即,所以圆C的极方程为(Ⅱ)把直线m的极坐标方程代入中得,,所以所以△ABC的周长为【点睛】本题主要考查参数方程与极坐标方程,属于基础题型.20、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)先利用线面垂直的判定定理,证得BD⊥面PAC,再利用面面垂直的判定定理,即可证得平面PBD⊥平面PAC;(Ⅱ)根据面积关系,得到M为PD的中点,建立空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(Ⅰ)在四棱锥P﹣ABCD中,∵四边形ABCD是菱形,∴AC⊥BD,∵PA⊥底面ABCD,∴DB⊥PA,又AP∩AC=A,∴BD⊥面PAC.又BD⊂平面PBD,∴平面PBD⊥平面PAC;(Ⅱ)∵过AC的平面交PD于点M若平面AMC把四面体P﹣ACD分成体积相等的两部分,∴M为PD的中点,则AO=OD,AC=1,建立如图所示的空间直角坐标系,则A(﹣1,0,0),C(1,0,0),P(﹣1,0,4),D(0,,0),M(,,1).设面AMC的法向量为,,,1),,由,取,可得一个法向量设面PMC的法向量为,,.,令,可一个法向量,则,即二面角A﹣MC﹣P的余弦值为.【点睛】本题考查了线面平行的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.21、(1)(2)【解析】

根据通项公式,求出二项式的常数项,再求出的展开式的各项系数之和,根据题意可以求出的值;(1)直接运用二项式展开式二项式系数和公式求解即可;(2)运用二项式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论