




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年福建省三明市石牌职业中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知点P在以为圆心、半径为1的扇形区域AOB(含边界)内移动,,E、F分别是OA、OB的中点,若其中,则的最大值是(
)A.
4 B.
2 C.
D.
8参考答案:A2.设函数在上的导函数为,且满足,则下面不等式在上恒成立的是(
)A.
B.
C.
D.参考答案:A3.若复数(i为虚数单位),则(
)A.3
B.2
C.
D.参考答案:B4.直线x﹣y+3=0被圆(x+2)2+(y﹣2)2=2截得的弦长等于()A. B. C.2 D.参考答案:D【考点】直线和圆的方程的应用.【专题】计算题.【分析】先根据点到直线的距离公式求出圆心到弦的距离即弦心距OD,然后根据垂径定理得到垂足为弦长的中点D,根据勾股定理求出弦长的一半BD,乘以2即可求出弦长AB.【解答】解:连接OB,过O作OD⊥AB,根据垂径定理得:D为AB的中点,根据(x+2)2+(y﹣2)2=2得到圆心坐标为(﹣2,2),半径为.圆心O到直线AB的距离OD==,而半径OB=,则在直角三角形OBD中根据勾股定理得BD==,所以AB=2BD=故选D.【点评】考查学生灵活运用点到直线的距离公式解决数学问题,以及理解直线和圆相交所截取的弦的一半、圆的半径、弦心距构成直角三角形.灵活运用垂径定理解决数学问题.5.如图,在四棱锥C-ABOD中,平面ABOD,,,且,,异面直线CD与AB所成角为30°,点O,B,C,D都在同一个球面上,则该球的表面积为(
)A. B. C. D.参考答案:B由底面的几何特征易得,由题意可得:,由于AB∥OD,异面直线CD与AB所成角为30°故∠CDO=30°,则,设三棱锥O-BCD外接球半径为R,结合可得:,该球的表面积为:.本题选择B选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.6.已知正整数列中,,则等于 (
) A.16 B.8 C. D.4参考答案:D略7.已知函数的图象与轴的两个相邻交点的距离等于,则为得到函数的图象可以把函数的图象上所有的点A.向右平移,再将所得图象上所有的点的纵坐标变为原来的2倍;
B.向右平移,再将所得图象上所有的点的纵坐标变为原来的2倍;C.向左平移,再将所得图象上所有的点的纵坐标变为原来的倍;D.向左平移,再将所得图象上所有的点的纵坐标变为原来的2倍.参考答案:A依题意知,故,故选A.8.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.2 B.3 C.4 D.5参考答案:C【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.9.已知等差数列中,,公差,若,,则数列的前项和的最大值为π
5π
10π
15π参考答案:D10.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()A.12+ B.12+23π C.12+24π D.12+π参考答案:C【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】根据几何体的三视图,得出该几何体是一半圆台中间被挖掉一半圆柱,结合图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π?(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C.【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.二、填空题:本大题共7小题,每小题4分,共28分11.已知平面向量的夹角为,且,若平面向量满足=2,则=.参考答案:【考点】9R:平面向量数量积的运算.【分析】设出向量,夹角为α,则与夹角为(),由平面向量满足=2,以及三角函数的平方关系得到cosα,再由数量积公式求得.【解答】解:设向量,夹角为α,则与夹角为(),由平面向量满足=2,得到,整理得到sin,代入sin2α+cos2α=1得到cosα=,所以||===;故答案为:12.设函数,,若关于的方程有且仅有三个不同的实数根,且它们成等差数列,则实数的取值构成的集合
.参考答案:13.若实数x,y满足,如果目标函数的最小值为,则实数m=_________。参考答案:8先做出的区域如图可知在三角形区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于点,由图象可知,目标函数在该点取得最小值,所以直线也过点,由,得,代入得,。如图14.已知曲线在处的切线与曲线在处的切线互相平行,则的值为
.
参考答案:或略15.如图,某三棱锥的三视图,则该三棱锥的体积为.参考答案:2【考点】由三视图求面积、体积.【分析】由三视图可知该三棱锥的底面为等腰直角三角形,高为3.从而解得.【解答】解:该三棱锥的底面为等腰直角三角形,高为3.则其体积V==2,故答案为2.【点评】本题考查了学生的空间想象力,属于基础题.16.角α的顶点在坐标原点O,始边在y轴的正半轴上,终边与单位圆交于第三象限内的点P,且tanα=﹣;角β的顶点在坐标原点O,始边在x轴的正半轴上,终边与单位圆交于第二象限内的点Q,且tanβ=﹣2.对于下列结论:①P(﹣,﹣);②|PQ|2=;③cos∠POQ=﹣;④△POQ的面积为.其中所有正确结论的序号有.参考答案:①②④【考点】三角函数线.【专题】三角函数的求值.【分析】利用诱导公式得到OP所对应的角,结合平方关系求解的正余弦值得答案,判断命题①;求出Q的坐标,由两点间的距离公式计算|PQ|2,然后判断真假;把两角差的余弦用诱导公式化为正弦,展开后计算得答案,再判断真假;直接由面积公式求值,然后判断真假.【解答】解:如图,对于①,由tanα=﹣,得,∴.又,且,解得:.设P(x,y),∴x=,.∴P().命题①正确;对于②,由tanβ=﹣2,得,又sin2β+cos2β=1,且,解得:.∴Q().∴|PQ|2==.命题②正确;对于③,cos∠POQ=cos()=﹣sin(α﹣β)=﹣sinαcosβ+cosαsinβ==.命题③错误;对于④,由③得:sin∠POQ=,∴.命题④正确.∴正确的命题是①②④.故答案为:①②④.【点评】本题考查命题的真假判断与应用,考查了三角函数线,训练了三角函数的诱导公式及同角三角函数基本关系式的用法,是中档题.17.(5分)已知F是抛物线y2=4x的焦点,M是这条抛物线上的一个动点,P(3,1)是一个定点,则|MP|+|MF|的最小值是.参考答案:4【考点】:抛物线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MP|+|MD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|MD|最小,答案可得.解:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,当D,M,P三点共线时|MP|+|MD|最小,为3﹣(﹣1)=4.故答案为:4.【点评】:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|MD|最小,是解题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.现有(n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn.(1)求p2的值;(2)证明:pn>.参考答案:【考点】数列与不等式的综合.【分析】(1)由题意知p2==,(2)先排第n行,则最大数在第n行的概率为=,即可求出为pn,再根据二项式定理和放缩法即可证明.【解答】解:(1)由题意知p2==,即p2的值为.(2)先排第n行,则最大数在第n行的概率为=;去掉第n行已经排好的n个数,则余下的﹣n=个数中最大数在第n﹣1行的概率为=;…故pn=××…×==.
由于2n=(1+1)n=Cn0+Cn1+Cn2+…+Cnn≥Cn0+Cn1+Cn2>Cn1+Cn2=Cn+12,故>,即pn>.19.“微信运动”是一个类似计步数据库的公众帐号,用户只需以运动手环或手机协处理器的运动教据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现,现随机选取朋友圈中的50人记录了他们某一天的走路步数,并将数据整理如下:步数/步0~30003001~60006001~80008001~1000010000以上男性人数/人127155女性人数/人03791规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记表示随机抽取人中被系统评为“积极性”的人数,求和X的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人)其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为;求的概率.参考答案:(1)被系统评为“积极性”的概率为,故.的数学期望.(2)“”包含“,”,“,”,“,”,“,”,“,”,“,”.,,,,,,所以.20.(本小题满分13分)已知,(1)求的单调区间;(2)当a=1时,比较的大小。参考答案:21.(14分)设F1、F2分别是椭圆的左、右焦点。
(I)若M是该椭圆上的一个动点,求的最大值和最小值;
(II)设过定点(0,2)的直线l与椭圆交于不同两点A、B,且∠AOB为钝角(其中O为坐标原点),求直线l的斜率k的取值范围。参考答案:解析:(I)由已知……2分
……5分所以当有最小值为-7;
当有最大值为1。
……7分
(II)设点
直线AB方程:
……※有
……9分因为为钝角,所以
……12分解得,此时满足方程※有两个不等的实根……14分故直线l的斜率k的取值范围
22.(本小题满分14分)设椭圆(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(I)求椭圆的方程;(II)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力企业投资项目核算流程
- 高一物理浮力定律的教学方案
- 2025年院感科室科研工作计划
- 基于物联网的农业现代化种植设备智能化升级策略
- 留守儿童教育中的帮扶教师心得体会
- 爱读书的好习惯话题作文(15篇)
- 我的小学时光回忆录作文14篇
- 2025中小学教师信息技术应用能力提升培训计划
- 2025高考评价体系对社会人才培养的影响心得体会
- 《地理课程中世界文化与自然遗产介绍教案》
- 2025年包钢集团公司招聘笔试参考题库含答案解析
- 雷电预警信息接收和响应制度
- 机械原理课程设计-抽油机机械系统设计说明书
- 电子样册三菱电机水源机wywr2
- 云南饮食文化以及风物特产
- 江苏南通市生育保险津贴待遇申请表
- 道路运输经营安全生产管理制度范本
- 企业标准化管理手册(完整版)
- 航空航天概论(课堂PPT)
- 新改版教科版六年级下册科学全册知识点归纳 (超全)
- 七年级第一节语文课(课堂PPT)
评论
0/150
提交评论