版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年江西省上饶市瑞洪中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设命题,则为(
)A.
B.
C.
D.参考答案:D试题分析:因命题是全称命题且是含一个量词的命题,故其否定为存在性命题,故应选D.考点:全称命题与存在命题之间的关系及运用.2.已知流程图如右图所示,该程序运行后,为使输出的值为16,则循环体的判断框内①处应填(
)(A)
(B)
(C)
(D)
参考答案:
3.用红、黄、蓝三种颜色去涂图中标号为的个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有(
)种A.18
B.36
C.72
D.108参考答案:D【知识点】排列组合综合应用解:因为
故答案为:D4.过点和点的直线在轴上的截距为(
)、
、
、、参考答案:D略5.设是虚数单位,复数为纯虚数,则实数为(
)A. B。 C. D。参考答案:D6.一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为(
)A.
B.
C.
D.参考答案:C一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为:p==.故选:C.
7.某几何体的三视图如图所示,则其侧面积为()A. B. C. D.参考答案:A【考点】L!:由三视图求面积、体积.【分析】从三视图可以推知,几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面,易求侧面积.【解答】解:几何体是四棱锥,底面是一个直角梯形,一条侧棱垂直底面.且底面直角梯形的上底为1,下底为2,高为1,四棱锥的高为1.四个侧面都是直角三角形,其中△PBC的高PB===故其侧面积是S=S△PAB+S△PBC+S△PCD+S△PAD==故选A8.在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()
参考答案:D9.若函数的定义域为R,则实数m的取值范围是
(
)
A.
B.
C.
D.参考答案:答案:D10.如果实数满足条件,那么的最大值为(
)A.
B.
C.
D.
参考答案:答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知且满足不等式组,则的最大值是
.参考答案:7412.若函数,则____________.参考答案:略13.左手掷一粒骰子,右手掷一枚硬币,则事件“骰子向上为6点且硬币向上为正面”的概率为_____.参考答案:【分析】分别求得骰子向上为6点和硬币向上为正面的概率,由独立事件概率公式即可求解.【详解】骰子向上为6点的概率为;硬币向上为正面的概率为;由独立事件概率公式可知“骰子向上为6点且硬币向上为正面”的概率为,故答案为:.【点睛】本题考查了古典概型概率求法,独立事件概率乘法公式应用,属于基础题.14.在平行四边形中,与交于点,是线段的中点,的延长线与交于点.若,,则等于___*****____(用,表示).参考答案:+
解:∵,,∴.∵E是OD的中点,∴,∴DF=AB
.∴,∴.
15.设,则二项式展开式中的第项为___________.参考答案:16.已知函数,则=______.参考答案:017.设函数,则的最大值为_
_.参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy中,设圆x2+y2﹣4x=0的圆心为Q.(1)求过点P(0,﹣4)且与圆Q相切的直线的方程;(2)若过点P(0,﹣4)且斜率为k的直线与圆Q相交于不同的两点A,B,以OA、OB为邻边做平行四边形OACB,问是否存在常数k,使得?OACB为矩形?请说明理由.参考答案:【考点】J9:直线与圆的位置关系.【分析】(1)设切线方程为:y=kx﹣4,利用圆心到直线的距离等于半径求出k,即可求过点P(0,﹣4)且与圆Q相切的直线的方程;(2)联立得(1+k2)x2﹣(8k+4)x+16=0,利用韦达定理,结合向量知识,即可得出结论.【解答】解:(1)由题意知,圆心Q坐标为(2,0),半径为2,设切线方程为:y=kx﹣4,所以,由解得所以,所求的切线方程为,或x=0;(2)假设存在满足条件的实数k,则设A(x1,y1),B(x2,y2),联立得(1+k2)x2﹣(8k+4)x+16=0∵△=16(2k+1)2﹣64(1+k2)>0,∴,∴,且y1+y2=k(x1+x2),∵=(x1+x2,y1+y2),∴,又=,要使平行四边形OACB矩形,则=,所以k=2,∴存在常数k=2,使得平行四边形OACB为矩形.19.已知数列{an}满足a1=1,an=(n∈N*,n≥2),数列{bn}满足关系式bn=(n∈N*)。(1)求证:数列{bn}为等差数列。(2)求数列{an}的通项公式。参考答案:(1)证明:因为bn=,且an=,所以bn+1===,所以bn+1-bn=-=2。又b1==1,所以数列{bn}是以1为首项,2为公差的等差数列。(2)由(1)知数列{bn}的通项公式为bn=1+(n-1)×2=2n-1,又bn=,所以an==。所以数列{an}的通项公式为an=。20.设函数f(x)=x2+ax﹣lnx.(1)若a=1,试求函数f(x)的单调区间;(2)令g(x)=,若函数g(x)在区间(0,1]上是减函数,求a的取值范围.参考答案:考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)求出函数f(x)的导数,利用导数的正负性判断单调性,从而求函数的极值;(2)求出g(x)的导数,化简构造函数h(x),求出h(x)的导数,讨论函数h′(x)正负性,判断h(x)的单调性,根据h(x)的正负性,判断g(x)的单调性,从而求出参数a的取值范围.解答: 解:(1)当a=1时,f(x)=x2+x﹣lnx,定义域为(0,+∞),∴f′(x)=2x+1﹣==,∴当0<x<,时f′(x)<0,当x>时,f′(x)>0,∴f(x)在(0,)上单调递减,在(,+∞)上单调递增,(2)g(x)==,定义域为(0,+∞),g′(x)=,令h(x)=,则h′(x)=﹣2x++2﹣a,h″(x)=﹣2﹣﹣<0,故h′(x)在区间(0,1]上单调递减,从而对(0,1],h′(x)≥h′(1)=2﹣a①当2﹣a≥0,即a≤2时,h′(x)≥0,∴y=h(x)在区间(0,1]上单调递增,∴h(x)≤h(1)=0,即F′(x)≤0,∴y=F(x)在区间(0,1]上是减函数,a≤2满足题意;②当2﹣a<0,即a>2时,由h′(1)<0,h′()=﹣+a2+2>0,0<<1,且y=h′(x)在区间(0,1]的图象是一条连续不断的曲线,∴y=h′(x)在区间(0,1]有唯一零点,设为x0,∴h(x)在区间(0,x0)上单调递增,在(x0,1]上单调递减,∴h(x0)>h(1)=0,而h(e﹣a)=﹣e﹣2a+(2﹣a)e﹣a+a﹣ea+lne﹣a<0,且y=h(x)在区间(0,1]的图象是一条连续不断的曲线,y=h(x)在区间(0,1)有唯一零点,设为x′,即y=F′(x)在区间(0,1)有唯一零点,设为x′,又F(x)在区间(0,x′)上单调递减,在(x′,1)上单调递增,矛盾,a>2不合题意;综上所得:a的取值范围为(﹣∞,2].点评:本题考查的是利用导数求函数的单调区间,同时考查了利用导数解决参数问题,利运用了二次求导,是一道导数的综合性问题.属于难题.21.(本小题13分)如图,在中,点在边上,,,,.(Ⅰ)求的面积;(Ⅱ)求线段的长.参考答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人贷款担保转让合同4篇
- 2025版住宅室内精装修与装饰工程施工合同5篇
- 人类的起源和发展课件2
- 出租车行业环保措施考核试卷
- 团队建设力量培养项目计划书考核试卷
- 印刷业科技创新与成果转化考核试卷
- 二零二五年度艺术品交易居间代理合同样本3篇
- 2025年创业创新贷款协议
- 2025年合作知名作者的高需求小说电子书协议
- 2025年分销协议范例样本
- 广东省佛山市2025届高三高中教学质量检测 (一)化学试题(含答案)
- 人教版【初中数学】知识点总结-全面+九年级上册数学全册教案
- 2024年全国体育单招英语考卷和答案
- 食品安全管理制度可打印【7】
- 2024年九年级语文中考名著阅读《儒林外史》考前练附答案
- 抖音丽人行业短视频直播项目运营策划方案
- 2024年江苏扬州市邗城文化旅游发展有限公司招聘笔试参考题库含答案解析
- 小学六年级数学100道题解分数方程
- 社区获得性肺炎护理查房内科
- 浅谈提高中学生历史学习兴趣的策略
- 项目管理实施规划-无锡万象城
评论
0/150
提交评论