版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定积分的值为()A. B. C. D.2.已知椭圆的短轴长为2,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为()A. B. C. D.3.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件4.甲、乙、丙三位同学独立的解决同一个间题,已知三位同学能够正确解决这个问题的概率分别为、、,则有人能够解决这个问题的概率为()A. B. C. D.5.已知两个正态分布密度函数的图象如图所示,则()A. B.C. D.6.经过伸缩变换后所得图形的焦距()A. B. C.4 D.67.同时具有性质“①最小正周期是”②图象关于对称;③在上是增函数的一个函数可以是()A. B.C. D.8.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2 B.3C.4 D.89.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是A.210B.336C.84D.34310.设是虚数单位,复数为实数,则实数的值为()A.1 B.2 C. D.11.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B. C. D.12.函数在区间上的最大值是2,则常数()A.-2 B.0 C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则目标函数的最小值为__________.14.已知△ABC中,角A,B,C成等差数列,且△ABC的面积为2+,则AC边长的最小值是________.15.函数的定义域为,导函数在内的图像如图所示,则函数在内有________个极大值点。16.定积分的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求的解集;(2)设,求证:.18.(12分)从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:数据分组频数(1)根据频数分布表,求该产品尺寸落在的概率;(2)求这件产品尺寸的样本平均数;(3)根据频率分布对应的直方图,可以认为这种产品尺寸服从正态分布;其中近似为样本平均值,近似为样本方差,经计算得,利用正态分布,求.19.(12分)设为数列的前项和,且,,.(Ⅰ)证明:数列为等比数列;(Ⅱ)求.20.(12分)4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.(1)若取出的红球的个数不少于白球的个数,则有多少不同的取法?(2)取出一个红球记2分,取出一个白球记1分,若取出4个球所得总分不少于5分,则有多少种不同取法.21.(12分)已知都是实数,,.(Ⅰ)若,求实数的取值范围;(Ⅱ)若对满足条件的所有都成立,求实数的取值范围.22.(10分)某企业有、两个岗位招聘大学毕业生,其中第一天收到这两个岗位投简历的大学生人数如下表:岗位岗位总计女生12820男生245680总计3664100(1)根据以上数据判断是有的把握认为招聘的、两个岗位与性别有关?(2)从投简历的女生中随机抽取两人,记其中投岗位的人数为,求的分布列和数学期望.参考公式:,其中.参考数据:0.0500.0250.0103.8415.0246.635
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据微积分基本定理,可知求解,即可.【详解】故选:C【点睛】本题考查微积分基本定理,属于较易题.2、D【解析】分析:由得椭圆的短轴长为,可得,,可得,从而可得结果.详解:由得椭圆的短轴长为,,解得,,设,则,,即,,故选D.点睛:本题考查题意的简单性质,题意的定义的有意义,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.3、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.4、B【解析】试题分析:此题没有被解答的概率为,故能够将此题解答出的概率为.故选D.考点:相互独立事件的概率乘法公式.点评:本题考查相互独立事件的概率乘法公式、互斥事件的概率和公式、对立事件的概率公式;注意正难则反的原则,属于中档题.5、A【解析】
正态曲线关于对称,且越大图象越靠近右边,第一个曲线的均值比第二个图象的均值小,又有越小图象越瘦高,得到正确的结果.【详解】正态曲线是关于对称,且在处取得峰值,由图易得,故的图象更“瘦高”,的图象更“矮胖”,则.故选A.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.6、A【解析】
用,表示出,,代入原方程得出变换后的方程,从而得出焦距.【详解】由得,代入得,∴椭圆的焦距为,故选A.【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.7、B【解析】
利用所给条件逐条验证,最小正周期是得出,把②③分别代入选项验证可得.【详解】把代入A选项可得,符合;把代入B选项可得,符合;把代入C选项可得,不符合,排除C;把代入D选项可得,不符合,排除D;当时,,此时为减函数;当时,,此时为增函数;故选B.【点睛】本题主要考查三角函数的图象和性质,侧重考查直观想象的核心素养.8、D【解析】
利用抛物线与椭圆有共同的焦点即可列出关于的方程,即可解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.【详解】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9、B【解析】
由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【详解】由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:B.【点睛】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.10、C【解析】
由复数代数形式的乘除运算化简,再由虚部为0可得答案.【详解】解:,复数为实数,可得,,故选:C.【点睛】本题主要考查复数代数形式的乘除运算法则,属于基础题,注意运算准确.11、D【解析】
连结,可证明是平行四边形,则,故的余弦值即为异面直线和所成角的余弦值,利用余弦定理可得结果.【详解】连结,由题得,故是平行四边形,,则的余弦值即为所求,由,可得,,故有,解得,故选D.【点睛】本题考查异面直线的夹角的余弦值和余弦定理,常见的方法是平移直线,让两条直线在同一平面中,再求夹角的余弦值.12、C【解析】分析:求出函数的导数,得到函数的单调区间,求出函数的最大值是,则值可求.详解:令,解得:或,
令,解得:
∴在递增,在递减,,
故答案为:2点睛:本题考查利用导数求函数在闭区间上的最值,考查了导数的综合应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】,作出约束条件表示的可行域,如图,平移直线,由图可知直线经过点时,取得最小值,且,,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14、【解析】
分析:由已知及等差数列的性质可得,结合三角形内角和定理可求的值,利用三角形面积公式可得,利用余弦定理及基本不等式可解得边的最小值.详解:成等差数列,,又,由,得,,因为,,解得,的最小值为,故答案为.点睛:本题主要考查了等差数列的性质、三角形内角和定理、三角形面积公式、余弦定理,基本不等式在解三角形中的应用,考查了计算能力和转化与划归思想,属于中档题.15、【解析】
先记导函数与轴交点依次是,且;根据导函数图像,确定函数单调性,进而可得出结果.【详解】记导函数与轴交点依次是,且;由导函数图像可得:当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;当时,,则单调递减;所以,当或,原函数取得极大值,即极大值点有两个.故答案为2【点睛】本题主要考查导函数与原函数间的关系,熟记导数的方法研究函数单调性与极值即可,属于常考题型.16、【解析】三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)利用零点分段法,写出的分段函数形式,分类讨论求解即可(2)根据,,利用作差法即可求证【详解】(1)当时,由,得,解得,所以;当时,,成立;当时,由,得,解得,所以.综上,的解集.(2)证明:因为,所以,.所以,所以.【点睛】本题考查利用零点分段法解决绝对值不等式求解、利用作差法处理两式大小关系的证明18、(1);(2);(3).【解析】分析:(1)根据条件得到概率为;(2)由平均数的概念得到数值;(3)结合第二问得到的均值,以条件中所给的得到,S=4.73,由得到结果.详解:(1)根据频数分布表可知,产品尺寸落在内的概率.(2)样本平均数.(3)依题意.而,,则....即为所求.点睛:这个题目考查了平均数的计算,概率的理解,以及正态分布的应用,正态分布是一种较为理想的分布状态,常见的概率.19、(1)见解析(2)【解析】
可通过和来构造数列,得出是等比数列,在带入得出首项的值,以此得出数列解析式。可以先把分成两部分依次求和。【详解】(1)因为,所以,即,则,所以,又,故数列是首项为2,公比为2的等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以。【点睛】本题考查构造数列以及数列的错位相减法求和。20、(1);(2).【解析】
(1)若取出的红球的个数不少于白球的个数,则有红、红白、红白三种情况,然后利用分类计数原理可得出答案;(2)若取出的球的总分不少于分,则有红、红白、红白和红白四种情况,然后利用分类计数原理可得出答案.【详解】(1)若取出的红球个数不少于白球个数,则有红、红白、红白三种情况,其中红有种取法,红白有种取法,红白有种取法.因此,共有种不同的取法;(2)若取出的个球的总分不少于分,则有红、红白、红白和红白四种情况.其中红有种取法,红白有种取法,红白有种取法,红白有种不同的取法.因此,共有种不同的取法.【点睛】本题考查分类加法计数原理应用,在解题时要熟练利用分类讨论思想,遵循不重不漏的原则,考查运算求解能力,属于中等题.21、(I);(II).【解析】试题分析:(1)化简函数的解析式,由得或.求出每个不等式组的解集,再取并集,即得所求;(2)由题可得,由绝对值不等式可得的最小值为2,可得,再根据的解集,求得的解集.试题解析:(1),由得或解得或,故所求实数的取值范围为.(2)由且,得,又∵,∴,∵的解集为,∴的解集为,∴所求实数的取值范围为.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电影投资与融资协议
- 物流运输恶劣天气应急预案
- 2024年度版权许可协议:音乐出版平台与独立音乐人合作合同
- 儿童韵律活动教学设计带
- 多功能商用物业管理合同
- 2024年度医疗设备联合体投标合作协议
- 食品安全监控质量管理制度
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷附答案下载
- 幼儿教育机构安全事故报告制度
- 隧道施工材料使用与管理方案
- 吊车参数表完整版本
- 睡眠障碍的药物治疗和非药物干预
- 武术队管理制度
- 工程水文学-第7章习题-流域产汇流计算附答案
- 通信行业销售人员销售技巧培训
- 护理学院本科生生产劳动实践教育实施方案
- 10KV配电室倒闸操作票
- 关于范进中举改编成剧本【六篇】
- 降低会阴侧切率的PDCA
- 胃癌科普宣教
- 临床科研课题设计及申报书撰写技巧
评论
0/150
提交评论