版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,都是实数,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知离散型随机变量X的分布列如图,则常数c为()X01PA. B. C.或 D.3.已知,其中、是实数,是虚数单位,则复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在平面直角坐标系中,已知抛物线的焦点为,过点的直线与抛物线交于,两点,若,则的面积为()A. B. C. D.5.直线y=a分别与直线y=2x+2,曲线y=x+lnx交于点A、A.3 B.2 C.3246.设双曲线:的左、右焦点分别为、,点在上,且满足.若满足条件的点只在的左支上,则的离心率的取值范围是()A. B. C. D.7.若函数f(x)的导数为f′(x)=-sinx,则函数图像在点(4,f(4))处的切线的倾斜角为()A.90°B.0°C.锐角D.钝角8.已知为非零不共线向量,设条件,条件对一切,不等式恒成立,则是的()A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件9.①线性回归方程对应的直线至少经过其样本数据点中的一个点;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于;③在某项测量中,测量结果服从正态分布,若位于区域内的概率为,则位于区域内的概率为;④对分类变量与的随机变量K2的观测值k来说,k越小,判断“与有关系”的把握越大.其中真命题的序号为()A.①④ B.②④ C.①③ D.②③10.将函数的图象向左平移个单位,所得函数图象的一条对称轴的方程为()A. B. C. D.11.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.12.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应A.从东边上山 B.从西边上山 C.从南边上山 D.从北边上山二、填空题:本题共4小题,每小题5分,共20分。13.=________.14.已知函数,则当函数恰有两个不同的零点时,实数的取值范围是______.15.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为_____.16.连续3次抛掷一枚质地均匀的硬币,在至少有一次出现正面向上的条件下,恰有一次出现反面向上的概率为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在矩形中,,,是的中点,以为折痕将向上折起,变为,且平面平面.(1)求证:;(2)求二面角的大小.18.(12分)对任意正整数,,定义函数满足如下三个条件:①;②;③.(1)求和的值;(2)求的解析式.19.(12分)甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.(Ⅰ)若甲投篮3次,求至少命中2次的概率;(Ⅱ)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.20.(12分)某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是,乙型产品使用寿命低于2年的概率是.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;(2)该校有购买该种设备的两种方案,方案:购买甲型3台;方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?21.(12分)为了让观赏游玩更便捷舒适,常州恐龙园推出了代步工具租用服务.已知有脚踏自行车与电动自行车两种车型,采用分段计费的方式租用.型车每分钟收费元(不足分钟的部分按分钟计算),型车每分钟收费元(不足分钟的部分按分钟计算),现有甲乙丙丁四人,分别相互独立地到租车点租车骑行(各租一车一次),设甲乙丙丁不超过分钟还车的概率分别为,并且四个人每人租车都不会超过分钟,甲乙丙均租用型车,丁租用型车.(1)求甲乙丙丁四人所付的费用之和为25元的概率;(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;(3)设甲乙丙丁四人所付费用之和为随机变量,求的概率分布和数学期望.22.(10分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与直线(为参数,)交于点,与曲线交于点(异于极点),且,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:先证明充分性,两边同时平方即可,再证明必要性,取特值,从而判断出结果。详解:充分性:将两边平方可得:化简可得:则,故满足充分性必要性:,当时,,故不满足必要性条件则是的充分而不必要条件故选点睛:本题考查了充分条件与必要条件的判定,可以根据其定义进行判断,在必要性的判定时采用了取特值的方法,这里也要熟练不等式的运用2、A【解析】
根据所给的随机变量的分布列写出两点分步的随机变量的概率要满足的条件,一是两个概率都不小于0,二是两个概率之和是1,解出符合题意的c的值.【详解】由随机变量的分布列知,,,,∴,故选A.【点睛】本题主要考查分布列的应用,求离散型随机变量的分布列和期望,属于基础题.3、D【解析】
由得,根据复数相等求出的值,从而可得复数的共轭复数,得到答案.【详解】由有,其中、是实数.所以,解得,所以则复数的共轭复数为,则在复平面内对应的点为.所以复数的共轭复数对应的点位于第四象限.故选:D【点睛】本题考查复数的运算和根据复数相等求参数,考查复数的概念,属于基础题.4、C【解析】
设直线的方程为,与抛物线联立,设,由,所以,结合韦达定理可得,,由可得解.【详解】因为抛物线的焦点为所以,设直线的方程为,将代入,可得,设,则,,因为,所以,所以,,所以,即,所以,所以的面积,故选C.【点睛】本题主要考查了直线与抛物线的位置关系,考查了设而不求的思想,由转化为是解题的关键,属于基础题.5、D【解析】试题分析:设A(x1,a),B(x2,a),则2(x1+1)=x2+lnx2考点:导数的应用.6、C【解析】
本题需要分类讨论,首先需要讨论“在双曲线的右支上”这种情况,然后讨论“在双曲线的左支上”这种情况,然后根据题意,即可得出结果。【详解】若在双曲线的右支上,根据双曲线的相关性质可知,此时的最小值为,因为满足题意的点在双曲线的左支,所以,即,所以①,若在双曲线的左支上,根据双曲线的相关性质可知,此时的最小值为,想要满足题意的点在双曲线的左支上,则需要满足,即,所以②由①②得,故选C。【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆锥曲线中双曲线的相关性质,考查双曲线的离心率的取值范围,考查双曲线的长轴、短轴以及焦距之间的关系,考查推理能力,是中档题。7、C【解析】,函数f(x)的图像在点(4,f(4))处的切线的倾斜角为锐角。8、C【解析】
条件M:条件N:对一切,不等式成立,化为:进而判断出结论.【详解】条件M:.
条件N:对一切,不等式成立,化为:.
因为,,,即,可知:由M推出N,反之也成立.
故选:C.【点睛】本题考查了向量数量积运算性质、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.9、D【解析】对于①,因为线性回归方程是由最小二乘法计算出来的,所以它不一定经过其样本数据点,一定经过,故错误;对于②,根据随机变量的相关系数知,两个随机变量相关性越强,则相关系数的绝对值越接近于1,故正确;对于③,变量服从正态分布,则,故正确;对于④,随机变量的观测值越大,判断“与有关系”的把握越大,故错误.故选D.点睛:在回归分析中易误认为样本数据必在回归直线上,实质上回归直线方程必过点,可能所有的样本数据点都不在直线上.10、C【解析】
利用“左加右减”的平移原则,求得平移后解析式,即可求得对称轴方程.【详解】将函数的图象向左平移个单位,得到,令,解得,令,解得.故选:C.【点睛】本题考查函数图像的平移,以及函数对称轴的求解,属综合基础题.11、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.12、D【解析】从东边上山共种;从西边上山共种;从南边上山共种;从北边上山共种;所以应从北边上山.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
本题考查定积分因为,所以函数的原函数为,所以则14、【解析】
由题方程恰有两个不同的实数根,得与有2个交点,利用数形结合得a的不等式求解即可【详解】由题可知方程恰有两个不同的实数根,所以与有2个交点,因为表示直线的斜率,当时,,设切点坐标为,,所以切线方程为,而切线过原点,所以,,,所以直线的斜率为,直线与平行,所以直线的斜率为,所以实数的取值范围是.故答案为【点睛】本题考查函数与方程的零点,考查数形结合思想,考查切线方程,准确转化题意是关键,是中档题,注意临界位置的开闭,是易错题15、【解析】
总体含100个个体,从中抽取容量为5的样本,则每个个体被抽到的概率为.【详解】因为总体含100个个体,所以从中抽取容量为5的样本,则每个个体被抽到的概率为.【点睛】本题考查简单随机抽样的概念,即若总体有个个体,从中抽取个个体做为样本,则每个个体被抽到的概率均为.16、【解析】试题分析:至少有一次正面向上的概率为,恰有一次出现反面向上的概率为,那么满足题意的概率为.考点:古典概型与排列组合.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)90°【解析】
(1)利用垂直于所在的平面,从而证得;(2)找到三条两两互相垂直的直线,建立空间直角坐标系,写出点的坐标,再分别求出两个面的法向量,,最后求法向量的夹角的余弦值,进而得到二面角的大小.【详解】(1)证明:∵,,∴,∴,∵,,,∴,,∴.(2)如图建立空间直角坐标系,则、、、、,从而,,.设为平面的法向量,则令,所以,设为平面的法向量,则,令,所以,因此,,有,即,故二面角的大小为.【点睛】证明线线垂直的一般思路:证明一条直线垂直于另一条直线所在的平面,所以根据题目所给的图形,观察并确定哪一条线垂直于哪一条线所在的平面,是证明的关键.18、(1),(2)【解析】
(1)由已知关系式直接推得即可;(2)由依次推出,再由,,依次推出即可.【详解】解:(1)因,令代入得:,令,代入得:,又,令代入得:.令,代入得:.(2)由条件②可得,,…….将上述个等式相加得:.由条件③可得:,,…….将上述个等式相加得:.【点睛】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.19、(Ⅰ).(Ⅱ)见解析.【解析】试题分析:(1)本题为独立重复试验,根据独立重复试验概率公式列方程组解得,再根据独立重复试验概率公式求至少命中2次的概率;(2)先确定随机变量可能取法:0,1,2,3,4,再根据独立重复试验概率公式求对应概率,列表得分布列,最后根据数学期望公式求期望.试题解析:(1)由题意,,解得,设“乙投篮3次,至少2次命中”为事件,则(2)由题意的取值为0,1,2,3,4.;;;.故的分布列为.20、(1)(2)选择B方案【解析】【试题分析】(1)由于总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,因此可运用独立事件的概率公式可求得;(2)可将问题转化为两类进行求解:(1)若选择方案,记试验期内更换该种设备台数为,总费用为元,则,所以,又,所以;(2)若选择B方案,记试验期内更换该种设备台数为,总费用元,则,,,,所以,又,所以因为,所以选择B方案.解:(1)总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,概率为:;(2)若选择方案,记试验期内更换该种设备台数为,总费用为元,则,所以,又,所以;若选择B方案,记试验期内更换该种设备台数为,总费用元,则,,,,所以,又,所以因为,所以选择B方案.21、(1);(2);(3).【解析】
(1)“甲乙丙丁四人所付的费用之和为25元”,即4人均不超过30分钟。(2)即丁付20元,甲乙丙三人中有且只有一人付10,其余2人付5,分3种情况。用相互独立事件同时发生概率公式与互斥事件的和事件概率公式可求解。(3)根据分类可知随机变量的所有取值为25,30,35,40,45,50,求出概率及期望。【详解】(1)记“甲乙丙丁四人所付的费用之和为25元”为事件,即4人均不超过30分钟,则.答:求甲乙丙丁四人所付的费用之和为25元的概率是(2)由题意,甲乙丙丁在分钟以上且不超过分钟还车的概率分别为,设“甲乙丙三人所付费用之和等于丁所付费用”为事件,则答:甲乙丙三人所付的费用之和等于丁所付的费用的概率是.(3)①若“4人均不超过30分钟”此时随机变量的值为25,即为事件,由(1)所以.②记“4人中仅有一人超过30分钟”为事件,事件又分成两种情况“超过30分钟的这一人是甲乙丙中的一个”和“超过30分钟的这一人是丁”,分别将上述两种情况记为事件和.i.事件对应的的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024补偿贸易的购销合同范文
- 企业与个人租车合同格式
- 家庭日常清洁委托合同大全
- 国际工程分包劳务合同
- 2024北京市房屋租赁合同自行成交
- 2024工厂车间承包合同范文
- 保管协议范文
- 平面广告设计委托协议书
- 2024室内装修合同新
- 股份买卖合同样本
- 乙酸乙酯的反应器设计流程图
- 《全国技工院校专业目录(2022年修订)》专业主要信息
- EM277的DP通讯使用详解
- 耐压绝缘测试报告
- 野兽派 beast 花店 调研 设计-文档资料
- 水泵房每日巡视检查表
- 杭州市区汽车客运站临时加班管理规定
- 垫片冲压模具设计毕业设计论文
- 冷库工程特点施工难点分析及对策
- Python-Django开发实战
- 小学道法小学道法1我们的好朋友--第一课时ppt课件
评论
0/150
提交评论