2022-2023学年广东省廉江市实验学校高二数学第二学期期末复习检测试题含解析_第1页
2022-2023学年广东省廉江市实验学校高二数学第二学期期末复习检测试题含解析_第2页
2022-2023学年广东省廉江市实验学校高二数学第二学期期末复习检测试题含解析_第3页
2022-2023学年广东省廉江市实验学校高二数学第二学期期末复习检测试题含解析_第4页
2022-2023学年广东省廉江市实验学校高二数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.只用四个数字组成一个五位数,规定这四个数字必须同时使用,且同一数字不能相邻出现,这样的五位数有()A. B. C. D.2.设为虚数单位,若复数满足,则复数()A. B. C. D.3.已知盒中装有大小形状完全相同的3个红球、2个白球、5个黑球.甲每次从中任取一球且不放回,则在他第一次拿到的是红球的前提下,第二次拿到白球的概率为()A. B. C. D.4.设,,∈R,且>,则A. B. C. D.5.已知一种元件的使用寿命超过年的概率为,超过年的概率为,若一个这种元件使用到年时还未失效,则这个元件使用寿命超过年的概率为()A. B. C. D.6.已知数列满足,则()A. B. C. D.7.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.若为假命题,则均为假命题C.对于命题:,使得,则:,均有D.“”是“”的充分不必要条件8.已知满足,其中,则的最小值为()A. B. C. D.19.在如图所示的计算的值的程序框图中,判断框内应填入A. B. C. D.10.设是虚数单位,复数为实数,则实数的值为()A.1 B.2 C. D.11.执行如图所示的程序框图,则输出的()A. B. C. D.12.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),⋯,概括出第n个式子为_______.14.平面上画条直线,且满足任何条直线都相交,任何条直线不共点,则这条直线将平面分成__________个部分.15.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,与交于两点,则_______.16.满足方程的解为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解甲、乙两奶粉厂的产品质量,采用分层抽样的方法从甲、乙两奶粉厂生产的产品中分别抽取16件和5件,测量产品中微量元素的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号123451701781661761807480777681(1)已知甲厂生产的产品共有96件,求乙厂生产的产品数量;(2)当产品中的微量元素满足且时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).18.(12分)如图,在多面体中,四边形是菱形,⊥平面且.(1)求证:平面⊥平面;(2)若设与平面所成夹角为,且,求二面角的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(=1\*ROMANI)求张同学至少取到1道乙类题的概率;(=2\*ROMANII)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.20.(12分)已知函数,.(1)若恒成立,求的取值范围;(2)已知,若使成立,求实数的取值范围.21.(12分)(1)解不等式:.(2)己知均为正数.求证:22.(10分)已知向量a=(3sinα,cosα),b=(2sinα,5sinα-4cosα),α∈,且a⊥b.(1)求tanα的值;(2)求cos的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

以重复使用的数字为数字为例,采用插空法可确定符合题意的五位数的个数;重复使用每个数字的五位数个数一样多,通过倍数关系求得结果.【详解】当重复使用的数字为数字时,符合题意的五位数共有:个当重复使用的数字为时,与重复使用的数字为情况相同满足题意的五位数共有:个本题正确选项:【点睛】本题考查排列组合知识的综合应用,关键是能够明确不相邻的问题采用插空法的方式来进行求解;易错点是在插空时,忽略数字相同时无顺序问题,从而错误的选择排列来进行求解.2、D【解析】

先由题意得到,,根据复数的除法运算法则,即可得出结果.【详解】因为,所以.故选:D【点睛】本题主要考查复数的运算,熟记除法运算法则即可,属于基础题型.3、D【解析】

设“第一次拿到的是红球”为事件A,“第二次拿到白球”为事件B,分别计算出,的值,由条件概率公式可得,可得答案.【详解】解:设“第一次拿到的是红球”为事件A,“第二次拿到白球”为事件B,可得:,,则所求事件的概率为:,故选:D.【点睛】本题主要考查条件概率与独立事件的计算,属于条件概率的计算公式是解题的关键.4、D【解析】分析:带特殊值验证即可详解:排除A,B.排除C.故选D点睛:带特殊值是比较大小的常见方法之一.5、A【解析】

记事件该元件使用寿命超过年,记事件该元件使用寿命超过年,计算出和,利用条件概率公式可求出所求事件的概率为.【详解】记事件该元件使用寿命超过年,记事件该元件使用寿命超过年,则,,因此,若一个这种元件使用到年时还未失效,则这个元件使用寿命超过年的概率为,故选A.【点睛】本题考查条件概率的计算,解题时要弄清楚两个事件的关系,并结合条件概率公式进行计算,考查分析问题和计算能力,属于中等题.6、B【解析】分析:首先根据题中所给的递推公式,推出,利用累求和与对数的运算性质即可得出结果详解:由,可得,即,累加得,又,所以,所以有,故选B.点睛:该题考查的是有关利用累加法求通项的问题,在求解的过程中,需要利用题中所给的递推公式,可以转化为相邻两项差的式子,而对于此类式子,就用累加法求通项,之后再将100代入求解.7、B【解析】

由原命题与逆否命题的关系即可判断A;由复合命题的真值表即可判断B;由特称命题的否定是全称命题即可判断C;根据充分必要条件的定义即可判断D;.【详解】A.命题:“若p则q”的逆否命题为:“若¬q则¬p”,故A正确;B.若p∧q为假命题,则p,q中至少有一个为假命题,故B错.C.由含有一个量词的命题的否定形式得,命题p:∃x∈R,使得x2+x+1<0,则¬p为:∀x∈R,均有x2+x+1≥0,故C正确;D.由x2﹣3x+2>0解得,x>2或x<1,故x>2可推出x2﹣3x+2>0,但x2﹣3x+2>0推不出x>2,故“x>2”是“x2﹣3x+2>0”的充分不必要条件,即D正确故选:B.【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.8、C【解析】

令,利用导数可求得单调性,确定,进而得到结果.【详解】令,则.,由得:;由得:,在上单调递减,在上单调递增,,即的最小值为.故选:.【点睛】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.9、D【解析】程序运行过程中,各变量值如下表所示:第一圈:S=0+1,i=5,第二圈:S=1+3,i=9,第三圈:S=1+3+5,i=13,…依此类推,第503圈:1+3+5+…+2013,i=2017,退出循环,其中判断框内应填入的条件是:i⩽2013,本题选择D选项.10、C【解析】

由复数代数形式的乘除运算化简,再由虚部为0可得答案.【详解】解:,复数为实数,可得,,故选:C.【点睛】本题主要考查复数代数形式的乘除运算法则,属于基础题,注意运算准确.11、B【解析】

模拟程序的运行过程,分析循环中各变量值的变化即可得到答案.【详解】由题意,输入值,,第一次执行,,,不成立;第二次执行,,,不成立;第三次执行,,,不成立;第四次执行,,,不成立;第五次执行,,,成立,输出.故选:B【点睛】本题主要考查循环框图的应用,按照框图的程序运行即可得出正确答案,属于基础题.12、A【解析】试题分析:画圆:(x–1)2+(y–1)2=2,如图所示,则(x–1)2+(y–1)2≤2表示圆及其内部,设该区域为M.画出表示的可行域,如图中阴影部分所示,设该区域为N.可知N在M内,则p是q的必要不充分条件.故选A.【考点】充要条件的判断,线性规划【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识相结合.本题的条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得出结论.二、填空题:本题共4小题,每小题5分,共20分。13、1-4+9-16+...【解析】

分析:根据前面的式子找规律写出第n个式子即可.详解:由题得1-4+9-16+点睛:(1)本题主要考查不完全归纳,考查学生对不完全归纳的掌握水平和观察分析能力.(2)不完全归纳得到的结论,最好要检验,发现错误及时纠正.14、【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。详解:1条直线将平面分成2个部分,即2条直线将平面分成4个部分,即3条直线将平面分为7个部分,即4条直线将平面分为11个部分,即,所以….根据累加法得所以点睛:本题综合考查了数列的累加法、归纳推理的综合应用。在解题过程中,应用归纳推理是解决较难题目的一种思路和方法,通过分析具体项,找到一般规律,再分析解决问题,属于中档题。15、8【解析】

将曲线极坐标方程化为化为直角坐标方程,将直线参数方程代入曲线的直角坐标方程,得到韦达定理的形式;利用可求得结果.【详解】曲线的直角坐标方程为:,把直线代入得:,,,则.故答案为:.【点睛】本题考查极坐标与参数方程中的弦长问题的求解,涉及到极坐标化直角坐标,直线参数方程中参数的几何意义等知识的应用;关键是明确直线参数方程标准方程中参数的几何意义,利用几何意义知所求弦长为.16、或,【解析】

根据组合数性质列方程解得即可.【详解】因为,所以根据组合数的性质可得或,解得或,经检验均符合题意.故答案为:或.【点睛】本题考查了组合数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)30;(2)18;(3)分布列见解析,期望为.【解析】

分析:(1)设乙厂生产的产品数量为件,由,即可求得乙厂生产的产品数量;(2)由题意,从乙厂抽取的件产品中,编号为的产品是优等品,即件产品中有件是优等品,由此可估算出乙厂生产的优等品的数量;(3)可能的取值为,求得取每个随机变量时的概率,得到分布列,利用公式求解数学期望.详解:(1)设乙厂生产的产品数量为件,则,解得所以乙厂生产的产品数量为30件(2)从乙厂抽取的5件产品中,编号为2、5的产品是优等品,即5件产品中有3件是优等品由此可以估算出乙厂生产的优等品的数量为(件)(3)可能的取值为0,1,2∴的分布列为:012∴点睛:本题主要考查了统计的应用,以及随机变量的分布列和数学期望的求解,其中正确理解题意,合理作出运算是阶段的关键,着重考查了分析问题和解答问题的能力,能很好的考查考生数学应用意识、基本运算求解能力等..【详解】请在此输入详解!18、(1)见解析;(2).【解析】

(1)根据已知可得和,由线面垂直判定定理可证平面,再由面面垂直判定定理证得平面⊥平面.(2)解法一:向量法,设,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系,求得的坐标,运用向量的坐标表示和向量的垂直条件,求得平面和平面的的法向量,再由向量的夹角公式,计算即可得到所求的值.解法二:三垂线法,连接AC交BD于O,连接EO、FO,过点F做FM⊥EC于M,连OM,由已知可以证明FO⊥面AEC,∠FMO即为二面角A-EC-F的平面角,通过菱形的性质、勾股定理和等面积法求得cos∠FMO,得到答案.解法三:射影面积法,连接AC交BD于O,连接EO、FO,根据已知条件计算,,二面角的余弦值cosθ=,即可求得答案.【详解】(1)证明:连结四边形是菱形,,⊥平面,平面,,,平面,平面,平面,平面⊥平面.(2)解:解法一:设,四边形是菱形,,、为等边三角形,,是的中点,,⊥平面,,在中有,,,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系如图所示,则所以,,设平面的法向量为,由得设,解得.设平面的法向量为,由得设,解得.设二面角的为,则结合图可知,二面角的余弦值为.解法二:∵EB⊥面ABCD,∴∠EAB即为EA与平面ABCD所成的角在Rt△EAB中,cos∠EAB=又AB=2,∴AE=∴EB=DF=1连接AC交BD于O,连接EO、FO菱形ABCD中,∠BAD=60°,∴BD=AB=2矩形BEFD中,FO=EO=,EF=2,EO²+FO²=EF²,∴FO⊥EO又AC⊥面BEFD,FO⊆面BEFD,∴FO⊥AC,AC∩EO=O,AC、EO⊆面AEC,∴FO⊥面AEC又EC⊆面AEC,∴FO⊥EC过点F做FM⊥EC于M,连OM,又FO⊥EC,FM∩FO=F,FM、FO⊆面FMO,∴EC⊥面FMOOM⊆面FMO,∴EC⊥MO∴∠FMO即为二面角A-EC-F的平面角AC⊥面BEFD,EO⊆面BEFD,∴AC⊥EO又O为AC的中点,∴EC=AE=Rt△OEC中,OC=,EC=,∴OE=,∴OM=Rt△OFM中,OF=,OM=,∴FM=∴cos∠FMO=即二面角A-EC-F的余弦值为解法三:连接AC交BD于O,连接EO、FO菱形ABCD中,∠BAD=60°,∴BD=AB=2矩形BEFD中,FO=EO=,EF=2,EO²+FO²=EF²,∴FO⊥EO又AC⊥面BEFD,FO⊆面BEFD,∴FO⊥AC,AC∩EO=O,AC、EO⊆面AEC,∴FO⊥面AEC又∵EB⊥面ABCD,∴∠EAB即为EA与平面ABCD所成的角在Rt△EAB中,cos∠EAB=又AB=2,∴AE=∴EB=DF=1在Rt△EBC、Rt△FDC中可得FC=EC=在△EFC中,FC=EC=,EF=2,∴在△AEC中,AE=EC=,O为AC中点,∴OE⊥OC在Rt△OEC,OE=,OC=,∴设△EFC、△OEC在EC边上的高分别为h、m,二面角A-EC-F的平面角设为θ,则cosθ=即二面角A-EC-F的余弦值为.【点睛】本题考查平面垂直的证明和二面角的计算,属于中档题.19、(=1\*ROMANI)(=2\*ROMANII)X0123P【解析】(=1\*ROMANI)解法一解法二(=2\*ROMANII)X所有可能取值为0,1,2,3.,,,所求的分布列为X0123P第一小问可以从两个方面去思考,一是间接法,就是张同学1道乙类题都没有取到的取法是多少?二是直接法,就是取一道乙类题和两道甲类体;两道乙类题和一道甲类体;三道乙类题。三种情况加起来就是共有多少种取法。第二问一是思考随机变量的所有可能取值,二是算出对应的概率,其中X=1和X=2要注意有两种情形。最后利用数学期望的公式求解。【考点定位】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论