2022-2023学年河南省开封市黎明中学高二数学文模拟试卷含解析_第1页
2022-2023学年河南省开封市黎明中学高二数学文模拟试卷含解析_第2页
2022-2023学年河南省开封市黎明中学高二数学文模拟试卷含解析_第3页
2022-2023学年河南省开封市黎明中学高二数学文模拟试卷含解析_第4页
2022-2023学年河南省开封市黎明中学高二数学文模拟试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省开封市黎明中学高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知数列的通项公式,设的前项和为,则使

成立的自然数A.有最大值63

B.有最小值63

C.有最大值31

D.有最小值31参考答案:B2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1﹣35号,再用系数抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是(

)A.3 B.4 C.5 D.6参考答案:B【考点】茎叶图.【专题】概率与统计.【分析】对各数据分层为三个区间,然后根据系数抽样方法从中抽取7人,得到抽取比例为,然后各层按照此比例抽取.【解答】解:由已知,将个数据分为三个层次是[130,138],[139,151],[152,153],根据系数抽样方法从中抽取7人,得到抽取比例为,所以成绩在区间[139,151]中共有20名运动员,抽取人数为20×=4;故选B.【点评】本题考查了茎叶图的认识以及利用系统抽样抽取个体的方法;关键是正确分层,明确抽取比例.3.已知,,,,,由此可猜想(

)(A)

(B)

(C)

(D)参考答案:B略4.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为,直径为4的球的体积为,则(

A. B. C. D.参考答案:A5.若,则x的值为(

)A.4

B.4或5

C.6

D.4或6参考答案:D因为,所以或,所以或,选D.

6.设集合A={},集合B={},则

(

)A.

B.

C.D.参考答案:BA==,B=,故选B.7.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为().A.①②

B.③④

C.①③

D.②④参考答案:C8.三角形的面积为、、为三边的边长,为三角形内切圆半径,利用类比推理可得出四面体的体积为(

)A.

B.C.D.(其中、、、分别为四面体4个面的面积,为四面体内切球的半径)参考答案:D9.下列赋值语句中错误的是

().A.N=N+1

B.K=K*K

C.C=A(B+D)

D.C=A/B参考答案:C略10.如果直线是平面的斜线,那么在平面内

A.不存在与平行的直线

B.不存在与垂直的直线C.与垂直的直线只有一条

D.与平行的直线有无穷多条参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.=.参考答案:e【考点】67:定积分.【分析】找出被积函数的原函数,然后计算求值.【解答】解:=(ex+x2)|=e+1﹣1=e,故答案为:e【点评】本题考查了定积分的计算;关键是明确被积函数的原函数.12.曲线上的任意一点P处切线的倾斜角的取值范围是______。参考答案:【分析】先对函数求导,根据其导函数的范围,求出切线斜率的范围,进而可得倾斜角范围.【详解】因为,则所以曲线上的任意一点处切线的斜率为,记切线的倾斜角为,则,所以.故答案为【点睛】本题主要考查曲线上任一点切线的倾斜角问题,熟记导数的几何意义即可,属于常考题型.

13.把一枚硬币任意抛掷两次,记第一次出现正面为事件A,第二次出现正面为事件B,则P(B|A)等于________.参考答案:略14.已知定圆M:,点A是圆M所在平面内一定点,点P是圆M上的动点,若线段PA的中垂线交直线PM于点Q,则点Q的轨迹可能是:①椭圆;②双曲线;③拋物线;④圆;⑤直线;⑥一个点.其中所有可能的结果的序号为___.参考答案:①②④⑥当点A在在圆M内,,,则点的轨迹是以为焦点的椭圆,当点在圆上时,由于,线段的中垂线交直线于,点的轨迹为一个点;点在圆外时,,,则点的轨迹是以为焦点的双曲线;当点与重合时,为半径的中点,点的轨迹是以M为圆心,2为半径的圆,其中正确的命题序号为①②④⑥.【点睛】求点的轨迹问题,主要方法有直接法、定义法、坐标相关法、参数法等,本题利用几何图象中的等量关系找出动点需要满足的条件,根据常见曲线的定义衡量其符合哪种曲线的定义,根据定义要求,写出曲线方程.本题由于点A为圆面上任意一点,所以需要讨论点A在圆心、圆内、圆上、圆外几种情况讨论研究,给出相应的轨迹方程.15.已知某一多面体内接于球构成一个简单的组合体,如果组合体的正视图、侧视图、俯视图均如下图所示,且图中的四边形是边长为2的正方形,则该球的表面积是

.参考答案:12π16.在中,若,则___________.参考答案:17.已知在上有两个不同的零点,

则m的取值范围是_____________.参考答案:[1,2)略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分).某个服装店经营某种服装,在某周内获纯利(元),与该周每天销售这种服装件数之间的一组数据关系见表:345678966697381899091已知,,.(1)求;

(2)画出散点图;(3)判断纯利与每天销售件数之间是否线性相关,如果线性相关,求出回归方程.参考公式:参考答案:19.某高校在2014年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.(Ⅰ)求出第4组的频率,并补全频率分布直方图;(Ⅱ)根据样本频率分布直方图估计样本的中位数;

参考答案:(0.01+0.07+0.06+0.02)×5=0.8,所以第四组的频率为0.2,

频率分布图

(Ⅱ)设样本的中位数为,则,

解得

所以样本中位数的估计值为略20.(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且==λ?(0<λ<1).(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;(2)当λ为何值时?平面BEF⊥平面ACD.

参考答案:(1)证明:∵AB⊥平面BCD,∴AB⊥CD.∵CD⊥BC,且AB∩BC=B,∴CD⊥平面ABC.又==λ?(0<λ<1),∴不论λ为何值,恒有EF∥CD,∴EF⊥平面ABC.∵EF平面BEF,

∴不论λ为何值总有平面BEF⊥平面ABC.----------------6分(2)解:由(1)知,BE⊥EF,又平面BEF⊥平面ACD,∴BE⊥平面ACD.∴BE⊥AC.∵BC=CD=1,∠BCD=90°,∠ADB=60°,∴BD=,AB=,AC=.由△ABC∽△AEB,有AB2=AE·AC,从而AE=.?∴==.故当λ=时,平面BEF⊥平面ACD.-----------------------12分21.已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn﹣1+a3bn﹣2…+an﹣1b2+anb1=2n+1﹣n﹣2.(1)若数列{an}是首项和公差都是1的等差数列,求b1,b2,并证明数列{bn}是等比数列;(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由;(3)若数列{an}是等差数列,数列{bn}是等比数列,求证:++…+<.参考答案:【考点】数列与不等式的综合.【专题】证明题;等差数列与等比数列.【分析】(1)利用递推关系式得出bn+2bn﹣1+3bn﹣2+…+(n﹣1)b2+nb1=2n+1﹣n﹣2,bn﹣1+2bn﹣2+3bn﹣3+…+(n﹣2)b2+(n﹣1)b1=2n﹣n﹣1,(n≥2),相减得出bn+bn﹣1+…+b2+b1=2n﹣1,利用前n项的和Sn求解bn=2n﹣1,证明即可.(2)bqn﹣1a1+bqn﹣2a2+bqn﹣3a3+…+bqan﹣1+ban=2n+1﹣n﹣2,又bqn﹣2a1+bqn﹣3a2+bqn﹣4a3+…+ban﹣1=2n﹣n﹣1(n≥2),an=×2n×n,讨论求解即可.(3)求解++…+=+…+<++…+求解为和的形式,放缩即可.【解答】解:(1)b1=1,b2=2,依题意数列{an}的通项公式是an=n,故等式即为bn+2bn﹣1+3bn﹣2+…+(n﹣1)b2+nb1=2n+1﹣n﹣2,bn﹣1+2bn﹣2+3bn﹣3+…+(n﹣2)b2+(n﹣1)b1=2n﹣n﹣1,(n≥2),两式相减可得bn+bn﹣1+…+b2+b1=2n﹣1,得bn=2n﹣1,数列{bn}是首项为1,公比为2的等比数列.

(2)设等比数列{bn}的首项为b,公比为q,则bn=bqn﹣1,从而有:bqn﹣1a1+bqn﹣2a2+bqn﹣3a3+…+bqan﹣1+ban=2n+1﹣n﹣2,又bqn﹣2a1+bqn﹣3a2+bqn﹣4a3+…+ban﹣1=2n﹣n﹣1(n≥2),故(2n﹣n﹣1)q+ban=2n+1﹣n﹣2,an=×2n×n,要使an+1﹣an是与n无关的常数,必需q=2,即①当等比数列{bn}的公比q=2时,数列{an}是等差数列,其通项公式是an=;②当等比数列{bn}的公比不是2时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论