版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市建阳水池中学2022-2023学年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.运行如下的程序,输出结果为()
A.32
B.33
C.61
D.63参考答案:D2.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2} B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2} D.{x|x<﹣lg2}参考答案:D【考点】其他不等式的解法;一元二次不等式的解法.【专题】不等式的解法及应用.【分析】由题意可得f(10x)>0等价于﹣1<10x<,由指数函数的单调性可得解集.【解答】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D【点评】本题考查一元二次不等式的解集,涉及对数函数的单调性及对数的运算,属中档题.3.命题“若,则”以及它的逆命题,否命题和逆否命题中,真命题的个数是(
)
A、0
B、2
C、3
D、4参考答案:B略4.设有一个回归直线方程=2﹣1.5x,当变量x增加1个单位时,则()A.y平均增加1.5个单位 B.y平均增加2个单位C.y平均减少1.5个单位 D.y平均减少2个单位参考答案:C【考点】BK:线性回归方程.【分析】根据回归直线方程的x的系数是﹣1.5,得到变量x增加一个单位时,函数值要平均增加﹣1.5个单位,即减少1.5个单位.【解答】解:∵直线回归方程为=2﹣1.5x,则变量x增加一个单位时,函数值要平均增加﹣1.5个单位,即减少1.5个单位,故选:C.5.设三棱锥的顶点在平面上的射影是,给出以下命题:①若两两互相垂直,则是的垂心②若,是斜边上的中点,则③若,则是的外心④若到的三边的距离相等,则为的内心其中正确命题的是(
)A.①③④
B.②③④
C.①②③
D.①②③④参考答案:C略6.下列选项错误的是(
)A.命题“若,则”的逆否命题是“若,则”B.“”是“”的充分不必要条件;C.若命题p:,,则:,;D.在命题的四种形式中,若原命题为真命题,则否命题为假命题参考答案:D对于A,命题“若,则”的逆否命题是“若,则”,正确;对于B,由解得:或,∴“”是“”的充分不必要条件,正确;对于C,若命题:,,则:,,正确;对于D,在命题的四种形式中,原命题与逆否命题同真同假,逆命题与否命题同真同假,原命题与否命题关系不定,故错误;故选:D
7.若.则下列不等式中成立的是(
)A.
B.
C.
D.参考答案:A8.设全集,,,则(
)A. B. C. D.参考答案:A【分析】先化简集合与集合,求出的补集,再和集合求交集,即可得出结果.【详解】因为,,所以,因此.故选A【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型.9.参数方程表示的图形是(
)A、以原点为圆心,半径为3的圆
B、以原点为圆心,半径为3的上半圆C、以原点为圆心,半径为3的下半圆
D、以原点为圆心,半径为3的右半圆参考答案:D略10.若p是真命题,q是假命题,则
参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.右图茎叶图是甲、乙两人在5次综合测评中成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为
.参考答案:12.在的二项展开式中,常数项等于.参考答案:-16013.用等值算法求294和84的最大公约数时,需要做
次减法.参考答案:414.若,则的值为__________.参考答案:-64【分析】可按照二项式展开公式,求出,其次就是将其看作多项式函数,代入,则,代,得,从而可求出答案.【详解】由题意有,当时,,当时,,∴,故将,代入上式可知故答案为:.【点睛】本题考查学生对二项式定理的掌握情况,会将二项式看做多项式函数,能分清展开式中每一项的系数,会求二项式系数,会赋值法处理相关问题,为容易题.中第项为:.15.下列有关命题的说法中,正确的是
(填所有正确答案的序号).①命题“若,则”的逆否命题为“若,
则”;②已知命题,命题,则命题是命题的必要不充分条件。③命题表示椭圆为真命题,则实数的取值范围是.参考答案:①
16.一个四棱锥的三视图如图所示,其中主视图是腰长为的等腰直角三角形,则这个几何体的体积是_________。参考答案:17.如图,在正方体ABCD﹣A1B1C1D1中,二面角C1﹣BD﹣C的正切值为.参考答案:【考点】二面角的平面角及求法.【分析】取BD的中点O,连接OC1,OC,则∠COC1就是二面角C1﹣BD﹣C的平面角,由此能求出二面角C1﹣BD﹣C的正切值.【解答】解:设正方体ABCD﹣A1B1C1D1的棱长为a,则,CD=BC=CC1=a,取BD的中点O,连接OC1,OC,则∠COC1就是二面角C1﹣BD﹣C的平面角,∵CO==,∴tan∠COC1==.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分组低碳族的人数占本组的频率1[25,30)1200.62[30,35)195P3[35,40)1000.54[40,45)a0.45[45,50)300.36[50,55)150.3
(1)请补全频率分布直方图,并求n、a、p的值;(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
参考答案:【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【专题】计算题.【分析】(I)由题意及统计图表,利用图表性质得第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,在有频率定义知高为,在有频率分布直方图会全图形即可;(II)由题意及(I)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,并且由题意分出随机变量X服从超几何分布,利用分布列定义可以求出分布列,并利用分布列求出期望.【解答】解:(Ⅰ)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为.频率直方图如下:
第一组的人数为,频率为0.04×5=0.2,所以.由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.(Ⅱ)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.,,,.所以随机变量X的分布列为X0123P
∴数学期望.【点评】此题考查了频率分布直方图及其性质,还考查了统计中的分层抽样及离散型随机变量的定义及分布列,并考查了应用其分布列求其期望,重在考查学生的理解及计算能力.19.已知点是圆上任意一点,点与点关于原点对称,线段的中垂线与交于点.(I)求点的轨迹的方程;(II)设轨迹与轴的两个左右交点分别为,点是轨迹上异于的任意一点,轴,为垂足,延长到点使得,连结延长交过且垂直于轴的直线交于点,为的中点.试判断直线与以为直径的圆的位置关系.参考答案:解:(Ⅰ)由题意得,圆的半径为,且从而所以点的轨迹是以为焦点的椭圆,其中长轴,焦距,则短半轴,
椭圆方程为:……………….4分(Ⅱ)设,则.因为,所以,所以,所以点在以为圆心,为半径的的圆上.即点在以为直径的圆上.又,所以直线的方程为.令,得.又,为的中点,所以.所以,.所以.所以.故直线与圆相切.
………….12分略20.设平面向量.(1)若,求的值;(2)若函数,求函数f(x)的最大值,并求出相应的x值。参考答案:(1)1;(2)5【分析】(1)由,得到,再由余弦的倍角公式,即可求解。(2)根据向量的数量积的运算和三角恒等变换的公式,化简得,再根据三角函数的性质,即可求解。【详解】(1)由题意知,向量,即,即,又由。(2)因为,故当,即时,有最大值,最大值是5.【点睛】本题主要考查了向量的数量积的运算,以及三角恒等变换和三角函数的性质的应用去,其中熟记向量的数量积的运算公式和三角恒等变换的公式求得函数的解析式是解答的关键,着重考查了运算与求解能力,属于基础题。
21.已知函数.(1)若,证明:当时,;(2)若f(x)在(0,+∞)有两个零点,求a的取值范围.参考答案:(1)证明见解析.(2).【详解】分析:(1)只要求得在时的最小值即可证;(2)在上有两个不等实根,可转化为在上有两个不等实根,这样只要研究函数的单调性与极值,由直线与的图象有两个交点可得的范围.详解:(1)证明:当时,函数.则,令,则,令,得.当时,,当时,在单调递增,(2)解:在有两个零点方程在有两个根,在有两个根,即函数与的图像在有两个交点.,当时,,在递增当时,,在递增所以最小值为,当时,,当时,,在有两个零点时,的取值范围是.点睛:本题考查用导数证明不等式,考查函数零点问题.用导数证明不等式可转化这求函数的最值问题,函数零点问题可转化为直线与函数图象交点问题,这可用分离参数法变形,然后再研究函数的单调性与极值,从而得图象的大致趋势.22.(12分)已知i是虚数单位,m∈R,z=m(m﹣1)+(m2+2m﹣3)i.(Ⅰ)若z是纯虚数,求m的值;(Ⅱ)若在复平面C内,z所对应的点在第四象限,求m的取值范围;(Ⅲ)当m=2时,z是关于x的方程x2+px+q=0的一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度场营销分公司智慧城市项目合作协议3篇
- 二零二五版商业街区场地租赁合作协议书6篇
- 2025年度高新技术产业常年法律顾问聘用协议3篇
- 二零二五年度企业税收筹划与税收筹划实施合同3篇
- 二零二五年度出口退税证明开具及国际金融服务合同3篇
- 二零二五年度港口码头租赁及港口货物装卸、仓储及配送服务协议8篇
- 二零二五年度土地承包经营权纠纷调解合同-@-2
- 2025草原禁牧与水资源保护管理协议合同3篇
- 2025年度个人个人借款合同信用评估标准3篇
- 二零二五食用油产品包装设计与印刷合同
- 中考模拟考试化学试卷与答案解析(共三套)
- 新人教版五年级小学数学全册奥数(含答案)
- 风电场升压站培训课件
- 收纳盒注塑模具设计(论文-任务书-开题报告-图纸)
- 博弈论全套课件
- CONSORT2010流程图(FlowDiagram)【模板】文档
- 脑电信号处理与特征提取
- 高中数学知识点全总结(电子版)
- GB/T 10322.7-2004铁矿石粒度分布的筛分测定
- 2023新译林版新教材高中英语必修一重点词组归纳总结
- 苏教版四年级数学下册第3单元第2课时“常见的数量关系”教案
评论
0/150
提交评论