版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省张家界市慈利城东中学2022-2023学年高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,是互相垂直的两个单位向量,=+2,=4﹣2,则()A.∥ B.⊥ C.||=2||| D.<,>=60°参考答案:B【考点】平面向量数量积的运算.【分析】经计算可知=0,从而两向量垂直.【解答】解:∵,是互相垂直的两个单位向量,∴=0,==1,∴==(+2)?(4﹣2)=4+6﹣42=0,.故选:B.2.如果正方形ABCD的边长为1,那么等于()A.1 B. C. D.2参考答案:A【考点】平面向量数量积的运算.【分析】求出的模长和夹角,代入数量积公式计算.【解答】解:∵正方形ABCD的边长为1,∴||=1,||=,∠BAC=,∴=||?||?cos=1.故选:A.3.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A.(2,+∞)
B.[2,+∞)C.(3,+∞)
D.[3,+∞)参考答案:C4.已知函数,(其中,)的部分图象,如图所示,那么的解析式为(
).A. B. C.
D.参考答案:A周期,∴,,∵,,∴.故选.5.要得到的图像,只需将的图像()A.向左平移个单位长度
B.向右平移个单位长度C.向左平移个单位长度
D.向右平移个单位长度参考答案:D6.若集合A={x|1≤3x≤81},B={x|log2(x2﹣x)>1},则A∩B=()A.(2,4] B.[2,4] C.(﹣∞,0)∪[0,4] D.(﹣∞,﹣1)∪[0,4]参考答案:A【考点】交集及其运算.【专题】集合.【分析】求出集合,利用集合的基本运算进行求解.【解答】解:A={x|1≤3x≤81}{x|0≤x≤4},B={x|log2(x2﹣x)>1}={x|x2﹣x>2}={x|x>2或x<﹣1},则A∩B={x|2<x≤4},故选:A【点评】本题主要考查集合的基本运算,要求熟练掌握集合的交并补运算,比较基础.7.已知双曲线的左右焦点为、,抛物线的顶点在原点,准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为
(
)A.
B. C.
D.参考答案:答案:B8.将函数的图象向左平移个单位长度后,得到函数f(x)的图象,则”是f(x)是偶函数”的A.充分不必要条件
B.必婴不充分条件
C.充分必要条件
D.既不充分也不必要条仲参考答案:A9.的(
)A.充分不必要条件B.必要不充分条件C.充分必要条件
D.既不充分又不必要条件参考答案:A略10.“”是“”成立的A.充分不必要条件
B.必要不充分条件C.充要条件
D.既不充分也不必要条件参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,,设两曲线,有公共点P,且在P点处的切线相同,当时,实数的最大值是______.参考答案:设,,.由题意知,,,即,,解得:或(舍),代入得:,,,当时,;当时,.实数的最大值是.故答案为.12.已知x>0,y>0,2x+y=1,若4x2+y2+﹣m<0恒成立,则m的取值范围是.参考答案:考点: 函数恒成立问题.
专题: 综合题;函数的性质及应用.分析: 4x2+y2+﹣m<0恒成立,即m>4x2+y2+恒成立,求出4x2+y2+的最大值,即可求得m的取值范围.解答: 解:4x2+y2+﹣m<0恒成立,即m>4x2+y2+恒成立,∵x>0,y>0,2x+y=1,∴1≥2,∴0<≤∵4x2+y2+=(2x+y)2﹣4xy+=1﹣4xy+=﹣4(﹣)2+,∴4x2+y2+的最大值为,∴.故答案为:.点评: 本题考查不等式恒成立问题,考察基本不等式的运用,正确转化是关键.13.已知正实数x,y满足xy+2x+3y=42,则xy+5x+4y的最小值为.参考答案:55【考点】7F:基本不等式.【分析】正实数x,y满足xy+2x+3y=42,可得y=>0,解得0<x<21.则xy+5x+4y=3x+y+42=3x++42=3+31,再利用基本不等式的性质即可得出.【解答】解:∵正实数x,y满足xy+2x+3y=42,∴y=>0,x>0,解得0<x<21.则xy+5x+4y=3x+y+42=3x++42=3+31≥3×+31=55,当且仅当x=1,y=10时取等号.∴xy+5x+4y的最小值为55.故答案为:55.14.设正实数满足,则的取值范围为
参考答案:考点:基本不等式【基本不等式】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.15.设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是.参考答案:【考点】基本不等式.【专题】不等式的解法及应用.【分析】设t=2x+y,将已知等式用t表示,整理成关于x的二次方程,二次方程有解,判别式大于等于0,求出t的范围,求出2x+y的最大值.【解答】解:∵4x2+y2+xy=1∴(2x+y)2﹣3xy=1令t=2x+y则y=t﹣2x∴t2﹣3(t﹣2x)x=1即6x2﹣3tx+t2﹣1=0∴△=9t2﹣24(t2﹣1)=﹣15t2+24≥0解得∴2x+y的最大值是故答案为【点评】本题考查利用换元转化为二次方程有解、二次方程解的个数由判别式决定.16.(文)求和:=
.()参考答案:因为,即。17.设函数若,则
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C:的离心率为,且椭圆C过点.过点(1,0)做两条相互垂直的直线l1、l2分别与椭圆C交于P、Q、M、N四点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若,,探究:直线ST是否过定点?若是,请求出定点坐标;若不是,请说明理由.参考答案:(Ⅰ)由题意知,,解得,故椭圆的方程为.(Ⅱ)∵,,∴、分别为、的中点.当两直线的斜率都存在且不为0时,设直线的方程为,则直线的方程为,,,,,联立,得,∴,∴,,∴中点的坐标为;同理,中点的坐标为,∴,∴直线的方程为,即,∴直线过定点;当两直线的斜率分别为0和不存在时,则直线的方程为,也过点;综上所述,直线过定点.
19.(本小题满分12分)某中学篮球队进行投篮训练,每人在一轮练习中最多可投篮4次,现规定一旦命中即停止该轮练习,否则一直投到4次为止.已知运动员甲的投篮命中率为0.7.
(I)求一轮练习中运动员甲的投篮次数ξ的分布列,并求出ξ的期望Eξ(结果保留两
位有效数字);
(II)求一轮练习中运动员甲至少投篮3次的概率.参考答案:(I)ξ的可能取值为1,2,3,4,ξ=1时,P(ξ=1)=0.7ξ=2时,P(ξ=2)=0.7(1-0.7)=0.21;ξ=3时,P(ξ=3)=0.7(1-0.7)2=0.063ξ=4时,P(ξ=4)=0.7(1-0.7)3+(1-0.7)4=0.027.∴ξ的分布为ξ1234P0.70.210.0630.027∴Eξ=1×0.7+2×0.21+3×0.063+4×0.027=1.4.(II)P(ξ≥3)=P(ξ=3)+P(ξ=4)=0.063+0027=0.09.20.(本小题满分12分)设。(1)求的最大值及最小值周期;(2)在中,角的对边分别为,锐角A满足,求的值。参考答案:21.已知函数,.(为自然对数的底数)(1)设;①若函数在处的切线过点,求的值;②当时,若函数在上没有零点,求的取值范围.(2)设函数,且,求证:当时,.参考答案:(Ⅰ)⑴由题意,得,所以函数在处的切线斜率,又,所以函数在处的切线方程,将点代入,得.
⑵当,可得,因为,所以,①当时,,函数在上单调递增,而,所以只需,解得,从而.
②当时,由,解得,当时,,单调递减;当时,,单调递增.所以函数在上有最小值为,令,解得,所以.综上所述,.
(Ⅱ)由题意,,而等价于.令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论