版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年四川省绵阳市建设中学A区高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,,,则的大小关系是(
)A.
B.
C.
D.参考答案:B2.f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3
B.1
C.-1
D.-3参考答案:D3.下列说法不正确的是(
)A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.参考答案:D4.函数在R上为增函数,且,则实数m的取值范围是A.(-∞,-3) B.(0,+∞)C.(3,+∞) D.(-∞,-3)∪(3,+∞)参考答案:C因为函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),所以2m>-m+9,即m>3.故选C.5.下列命题中,是正确的全称命题的是()A.对任意的,都有;B.菱形的两条对角线相等;C.;D.对数函数在定义域上是单调函数。参考答案:D
解析:A中含有全称量词“任意”,因为;是假命题,B,D在叙述上没有全称量词,实际上是指“所有的”,菱形的对角线不相等;C是特称命题。6.若,则的值为
(
)(A)0
(B)
(C)1
(D)高.参考答案:B略7.方程的解所在的区间为A.
B.
C.
D.参考答案:B略8.已知数列,它的第5项的值为
(
)A.
B.
C.
D.
参考答案:D9.若,且,则下列不等式一定成立的是(
)A. B.C. D.参考答案:B【分析】根据不等式性质确定选项.【详解】当时,不成立;因为,所以;当时,不成立;当时,不成立;所以选B.【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.10.在直角坐标系中,已知点、,动点P满足,且、,,则点P所在区域的面积为(
)A.1
B.2
C.
D.参考答案:C如图,动点满足,且、,的区域为则点所在区域的面积为,故选
二、填空题:本大题共7小题,每小题4分,共28分11.某同学在研究函数时,给出了下面几个结论:①函数的值域为;②若,则恒有;③在(-∞,0)上是减函数;④若规定,,则对任意恒成立,上述结论中所有正确的结论是(
)A.②③
B.②④
C.①③
D.①②④参考答案:D略12.(5分)如图是一个正方体纸盒的展开图,在原正方体纸盒中有下列结论:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.其中,正确命题的序号是
.参考答案:③④考点: 异面直线及其所成的角;空间中直线与直线之间的位置关系.专题: 证明题.分析: 先利用正方体纸盒的展开图,画出它的直观图,特别注意特殊点的位置,再在正方体中证明线线位置关系以及求异面直线所成的角即可解答: 如图为正方体纸盒的直观图:由图可知:BM与ED异面且垂直,①错误;CN与BE平行,②错误;异面直线CN与BM所成的角即∠EBM,由于△EBM为等边三角形,故∠EBM=60°,③正确;因为DM⊥NC,DM⊥BC,NC∩BC=C,所以DM⊥平面NCB,所以DM⊥BN,④正确故答案为③④点评: 本题考查了空间几何体的展开图与直观图间的关系,空间的线线位置关系及其证明,异面直线所成的角及其求法,将平面图准确的转化为直观图是解决本题的关键
13.下列叙述正确的序号是
(1)对于定义在R上的函数,若,则函数不是奇函数;
(2)定义在上的函数,在区间上是单调增函数,在区间上也是单调增函数,则函数在上是单调增函数;
(3)已知函数的解析式为=,它的值域为,那么这样的函数有9个;(4)对于任意的,若函数,则参考答案:略14.函数(且)恒过定点
.参考答案:(2,1)
15.已知两条不同直线、,两个不同平面、,给出下列命题:①若垂直于内的两条相交直线,则⊥;②若∥,则平行于内的所有直线;③若,且⊥,则⊥;④若,,则⊥;⑤若,且∥,则∥;其中正确命题的序号是__________.参考答案:①④16.(5分)设集合A(p,q)={x∈R|x2+px+q=0},当实数p,q取遍的所有值时,所有集合A(p,q)的并集为
.参考答案:[﹣考点: 并集及其运算;元素与集合关系的判断.专题: 综合题;压轴题.分析: 由x2+px+q=0,知x1=(﹣p+),x2=(﹣p﹣),由此能求出所有集合A(p,q)的并集.解答: ∵x2+px+q=0,∴x1=(﹣p+),x2=(﹣p﹣),即﹣p尽可能大也是尽可能大时,x最大,视p为常数
则q=﹣1时p2﹣4q最大值为4+p2,即(x1)max=,①p=﹣1时(x1)max=,即xmax=x1=,同理当x2取最小值是集合最小,即x2中﹣q最小且﹣最小,即(x2)min=﹣(p+)中(p+﹣4q)最大由①得(p+)最大值为1+,即xmin=﹣,∴所有集合A(p,q)的并集为.故答案为:.点评: 本题考查集合的并集及其运算的应用,解题时要认真审题,注意换法的合理运用,恰当地借助三角函数的性质进行解题.17.设函数,则的值为
.参考答案:4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知集合A={x|2<x<8},集合B={x|a<x<2a﹣2},若满足B?A,求实数a的取值范围.参考答案:【考点】集合的包含关系判断及应用.【专题】计算题;分类讨论;综合法;集合.【分析】要分B等于空集和不等于空集两种情况.再根据B?A求出a的取值范围.【解答】解:∵集合A={x|2<x<8},集合B={x|a<x<2a﹣2},B?A,∴B=?时,a≥2a﹣2,∴a≤2;B≠?时,….6∴2<a≤5….10综上述得a的取值范围为{a|a≤5}…12【点评】本题考查子集的定义,考查分类讨论的数学思想,注意B=?的情况.19.已知集合=,,全集.(1)求;.(2)如果,求的取值范围.参考答案:①,--3分所以;
(2)略20.(8分)某校数学第二课堂研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日
期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差(°C)1011131286就诊人数(个)222529261612
该研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程.(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考数据:;.参考答案:解:(1),,……(2分),
.,
……(4分).
于是得到y关于x的回归直线方程.……(5分)(2)
当时,,;
……(6分)同样,当时,,.
……(7分)所以,该小组所得线性回归方程是理想的.
……(8分)21.(16分)(1)在学习函数的奇偶性时我们知道:若函数y=f(x)的图象关于点P(0,0)成中心对称图形,则有函数y=f(x)为奇函数,反之亦然;现若有函数y=f(x)的图象关于点P(a,b)成中心对称图形,则有与y=f(x)相关的哪个函数为奇函数,反之亦然.(2)将函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,求此时图象对应的函数解释式,并利用(1)的性质求函数g(x)图象对称中心的坐标;(3)利用(1)中的性质求函数图象对称中心的坐标,并说明理由.参考答案:考点: 对数函数图象与性质的综合应用.专题: 规律型;函数的性质及应用.分析: (1)若函数y=f(x)的图象关于点P(a,b)成中心对称图形,则将函数图象平移后,对称中心与原点重合时,该函数为奇函数,此时应向左平移a个单位,再向下平移b个单位,根据平移变换法则,可得答案.(2)根据平移变换法则,可得函数g(x)=x3+6x2的图象平移后对应的函数解析式,分析其奇偶性后,结合(1)中结论可得原函数的对称中心.(3)设函数图象向左平移a个单位,再向下平移b个单位后关于原点对称,即对应函数为奇函数,根据奇函数的定义,可求出a,b的值,结合(1)的结论可得原函数的对称中心的坐标.解答: (1)函数y=f(x)的图象关于点P(a,b)成中心对称图形,则将函数图象平移后,对称中心与原点重合时,该函数为奇函数,此时应向左平移a个单位,再向下平移b个单位,此时函数的解析式为:y=f(x+a)﹣b(2)函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,所得函数y=(x﹣2)3+6(x﹣2)2﹣16,化简得y=x3为奇函数,即y=g(x﹣2)﹣16为奇函数,故函数g(x)图象对称中心的坐标为(﹣2,16)(3)设是奇函数,则,即,即,得,得(1﹣a)2﹣x2=22b(16a2﹣16x2),即(16?22b﹣1)x2+(1﹣a)2﹣22b?16a2=0.由x的任意性,得16?22b﹣1=0,(1﹣a)2﹣22b?16a2=0,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《构成艺术》2021-2022学年第一学期期末试卷
- 沈阳理工大学《单片机原理与接口技术》2021-2022学年期末试卷
- 广东省预拌混凝土买卖合同
- 孩子上学购房合同摘抄表
- 合同变更及终止管理办法
- 2024-2025学年高中政治第四单元认识社会与价值选择11.2社会历史的主体作业含解析新人教版必修4
- 2024《秦皇岛市劳动合同》
- 2024年泰安客运资格证模拟考试题
- 2024工程桩基检测合同书
- 第23课《黄继光》第一课时(分层作业)-【上好课】四年级语文下册部编版
- 文学阅读与创意表达任务群下的教学设计六上第四单元
- 2024交通银行借贷合同范本
- 六年级语文上册18.《书湖阴先生壁》课件
- 2024管道焊后热处理工艺
- 泵闸工程施工组织设计(技术标)
- 5.3 善用法律 课件-2024-2025学年统编版道德与法治八年级上册
- 2024至2030年中国甲硫醇钠产品市场供需分析及发展前景展望报告
- DB3305-T 250-2022应急救灾物资储备库建设规范
- 2024年中远海运限公司招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 济南版中考生物二轮复习:重难点基础知识复习提纲
- 设计概述 课件-2024-2025学年高中美术人教版(2019)选择性必修4 设计
评论
0/150
提交评论