




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
当领域为1×1,即只包含当前象素自己时,T成为灰度级变换函数,此时的处理成为点处理。当更大的邻域被考虑时,往往成为掩码处理(maskprocessing)或者滤波。两个常用的灰度级变换函数:对照度拉伸和阈值函数3.2一些基本的灰度变换负变换S=L-1-r,这里图像的灰度范围为[0,L-1]对数变换其将使比较狭窄的低灰度级范围变得更宽,而较宽的高灰度级范围变得更窄,同时能够压缩象素值变化范围很大的图像,使之象素值分布范围更小。Fourier谱(0~1.5*106)经过对数变换后:0~6.2幂律变换c=1,而变化时的各种变换规律幂律变换的一个最好应用是伽马校正(Gammacorrection)被广泛使用在图像捕捉、打印和显示设备上。=2.5=0.4Gamma变换用于通常的对照度操作Fourier谱(0~1.当领域为1×1,即只包含当前象素自己时,T成为灰度级变换函数,此时的处理成为点处理。反锐化掩膜和高提升滤波(unsharpmaskingandhigh-boostfiltering)nk于是,原始图象中灰度级为rj的所有象素均映射成灰度级zk。另外,直方图处理是完全“自主”性质的,即该过程所需的参数完全来自图像本身,不需要任何额外的参数,是一种有力的自适应增强工具。ContrastStretchandthefinalResult一阶导数和二阶导数的特征:这里:a=(m-1)/2,b=(n-1)/2,这种线性空间滤波也通常指“把图像与掩码进行卷积”,掩码也叫“卷积掩码”。一般,可以根据特定的增强任务,采用试错的方法来得到想要的直方图规定。sharpenedimageArathernoisysharpenedimageisexpected.UtilizetheLaplaciantohighlightfinedetail以上,k表示某个灰度级,L是整个灰度级的数目,在通常的8位图像下,为256。sharpenenhancedimageThewayinwhichtheresultsareuseddependsontheapplicationandtheuser.除了能提供有关图像的统计特征外,其所包含的信息还能用于其他很多的图像处理技术,如图像分割、图像压缩等。另外,直方图处理是完全“自主”性质的,即该过程所需的参数完全来自图像本身,不需要任何额外的参数,是一种有力的自适应增强工具。直方图反映的总体性质:明暗程度、细节是否清晰、动态范围大小等将各点灰度由z映射成v。分段线性变换分段线性函数的主要有点是其形式可以任意复杂,主要缺点是其说明需要更多的用户输入。对照度拉伸变换:分段线性函数低对照度放大约700倍的花粉SEM图像对照度拉伸结果灰度阈值化处理灰度切割(slicing):主要用于突出某个特定的灰度范围,从而增强某个专门的特征,如卫星图像中的水团。位平面切割(bit-planeslicing):该操作主要是为突出图像中的某个具体的位对整个图像外表的贡献。可以把一副数字图像分解成位平面的组合,分析图像每个位的相对重要性,从而在图像量化时可以帮助决定所使用的位数是否足够,这种分解在图像压缩中也有很大的作用。3.3直方图处理直方图是大量的空域处理技术的基础,直方图处理可以有效地用于图像增强。除了能提供有关图像的统计特征外,其所包含的信息还能用于其他很多的图像处理技术,如图像分割、图像压缩等。其软件实现简单,可以做成固件,使其在实时图像处理中成为最受欢迎的工具。定义:性质:直方图描述了每个灰度级具有的像素的个数,反映的是图像灰度的统计信息,但丢失了所有这些像素点的空间信息,即像素点的相对位置。因此,任一特定的图像有唯一的直方图,但反之并不成立。直方图反映的总体性质:明暗程度、细节是否清晰、动态范围大小等四种典型灰度图像的直方图特征:(a)暗图像;(b)亮图像;(c)低对照度图像;(e)高对照度图像直方图的计算:通过面积求直方图(做实验):直方图的用途:1)数字化参数的选择:2)边界阈值的选取:例:nkLaplacianenhanced平均法在一定程度上抑制了噪声,但同时也会引起模糊线性,其程度与邻域半径成正比。从滤波器响应的角度讲,上式也可以简写称:CombineLaplacianandgradienttogetthedetail-enhancedandnoise-compressedimageThematerialinthislectureisrepresentativeofspatialdomaintechniquescommonlyusedinpracticeforimageenhancement.当领域为1×1,即只包含当前象素自己时,T成为灰度级变换函数,此时的处理成为点处理。UtilizetheLaplaciantohighlightfinedetail另外,直方图处理是完全“自主”性质的,即该过程所需的参数完全来自图像本身,不需要任何额外的参数,是一种有力的自适应增强工具。模糊处理通常用在预处理阶段,如在目标抽取前用于移除小的细节,或者把线和曲线间的间隙连接起来。nknk实际实现时通常采用如下近似:S=L-1-r,这里图像的灰度范围为[0,L-1]一般,可以根据特定的增强任务,采用试错的方法来得到想要的直方图规定。特点:虽然不象连续情况下时输出灰度完全满足均匀分布,但从该方程明显可以看出,均衡化后的图像比原图像所跨越的灰度级范围更宽。不过当模板的边界超出图像的边界时,要注意边界问题的处理,最常用的方法是填充(padding),但其会影响图像的边界,影响程度随模板尺寸的增大而增加。锐化相当于增强高频成分,但也会加强噪声,因为噪声一般集中在高频段。两个常用的灰度级变换函数:对照度拉伸和阈值函数将各点灰度由r映射成s。Thematerialinthislectureisrepresentativeofspatialdomaintechniquescommonlyusedinpracticeforimageenhancement.直方图均衡处理(equalization)用于直方图均衡化的函数s=T(r)必须满足两个条件:T(r)是一个单调递增的单值函数0=T(r)<=1,对0=r<=1;以上s和r;分别表示输入和输出图像的规一化灰度,即在[0,1]范围可以证明,概率累计分布函数就是所要的直方图均衡函数:在离散情况下:以上,k表示某个灰度级,L是整个灰度级的数目,在通常的8位图像下,为256。以上的方程就是通常所说的直方图均衡化或者线性化。很显然,该方程满足前面所说的两个条件。特点:虽然不象连续情况下时输出灰度完全满足均匀分布,但从该方程明显可以看出,均衡化后的图像比原图像所跨越的灰度级范围更宽。另外,直方图处理是完全“自主”性质的,即该过程所需的参数完全来自图像本身,不需要任何额外的参数,是一种有力的自适应增强工具。。还有,该技术实现起来也很简单。rjrj+rsjsj+s例例:设图象有64*64=4096个象素,有8个灰度级,灰度分布如表所示。进行直方图均衡化。rkr0=0r1=1/7r2=2/7r3=3/7r4=4/7r5=5/7r6=6/7r7=1
nk790102385065632924512281p(rk)
0.190.250.210.160.080.060.030.02步骤:rkr0=0r1=1/7r2=2/7r3=3/7r4=4/7r5=5/7r6=6/7r7=1
nk790102385065632924512281p(rk)
0.190.250.210.160.080.060.030.02例1.由(2-2)式计算sk。rkr0=0r1=1/7r2=2/7r3=3/7r4=4/7r5=5/7r6=6/7r7=1
nk790102385065632924512281p(rk)
0.190.250.210.160.080.060.030.02sk计算0.190.440.650.810.890.950.981.00例rkr0=0r1=1/7r2=2/7r3=3/7r4=4/7r5=5/7r6=6/7r7=1
nk790102385065632924512281p(rk)
0.190.250.210.160.080.060.030.02sk计算0.190.440.650.810.890.950.981.00sk舍入1/73/75/76/76/71112.把计算的sk就近安排到8个灰度级中。例rkr0=0r1=1/7r2=2/7r3=3/7r4=4/7r5=5/7r6=6/7r7=1
nk790102385065632924512281p(rk)
0.190.250.210.160.080.060.030.02sk计算0.190.440.650.810.890.950.981.00sk舍入1/73/75/76/76/7111sks1s3s5s6s7nsk7901023850985448p(sk)
0.190.250.210.240.113.重新命名sk,归并相同灰度级的象素数。例直方图均衡化均衡化前后直方图比较例4)二阶导数在灰度变化相似时,其对线的响应要强于阶跃变化,对点的响应又强于线。TheSharpenEnhancedImage从滤波器响应的角度讲,上式也可以简写称:若这些灰度级所构成的图象细节比较重要,则需采用局部区域直方图均衡。5节),前面的方法同样可以使用,但此时处理的是一副图像中的某个子区域。nk若这些灰度级所构成的图象细节比较重要,则需采用局部区域直方图均衡。将各点灰度由z映射成v。sharpenedimage直方图描述了每个灰度级具有的像素的个数,反映的是图像灰度的统计信息,但丢失了所有这些像素点的空间信息,即像素点的相对位置。Sharpenenhanced将各点灰度由z映射成v。当领域为1×1,即只包含当前象素自己时,T成为灰度级变换函数,此时的处理成为点处理。Thewayinwhichtheresultsareuseddependsontheapplicationandtheuser.UtilizetheLaplaciantohighlightfinedetail通过把原图像与锐化处理结果相减,可以既保留锐化效果,同时能恢复图像的背景特征。2一些基本的灰度变换当更大的邻域被考虑时,往往成为掩码处理(maskprocessing)或者滤波。一阶导数算子的数字近似:数字图像处理是一个迅速发展的动态领域,不断有新的技术和应用见于报道。当领域为1×1,即只包含当前象素自己时,T成为灰度级变换函数,此时的处理成为点处理。也称做滤波器(filter)、核(kernel)、模板(template)、窗口(window)。在某些情况下,用于增强某个小区域细节的局部增强技术是需要的。nkThematerialinthislectureisrepresentativeofspatialdomaintechniquescommonlyusedinpracticeforimageenhancement.ContrastStretchandthefinalResultOriginalimageIncreasethecontrastoflowgraylevelsbyusingagray-leveltransformation.Thefinalstepinthisenhancementtaskistoincreasethecontrastofthesharpenedimage.其将使比较狭窄的低灰度级范围变得更宽,而较宽的高灰度级范围变得更窄,同时能够压缩象素值变化范围很大的图像,使之象素值分布范围更小。一阶导数和二阶导数的特征:nk另外,直方图处理是完全“自主”性质的,即该过程所需的参数完全来自图像本身,不需要任何额外的参数,是一种有力的自适应增强工具。(1)由空域增强技术也可借助频率域进行分析和理解,图像平滑也就是增强图像的低频成分,但也会造成模糊;Sharpenenhanced特点:虽然不象连续情况下时输出灰度完全满足均匀分布,但从该方程明显可以看出,均衡化后的图像比原图像所跨越的灰度级范围更宽。数字图像处理是一个迅速发展的动态领域,不断有新的技术和应用见于报道。通过面积求直方图(做实验):2一些基本的灰度变换从滤波器响应的角度讲,上式也可以简写称:4代数和逻辑运算增强例:
直方图均衡化实质上是减少图象的灰度级以换取对比度的加大。在均衡过程中,原来的直方图上频数较小的灰度级被归入很少几个或一个灰度级内,故得不到增强(?!)。若这些灰度级所构成的图象细节比较重要,则需采用局部区域直方图均衡。
直方图匹配/规定(specification)
另外,直方图的规定没有什么规则可循。一般,可以根据特定的增强任务,采用试错的方法来得到想要的直方图规定。连续灰度的直方图原图连续灰度的直方图规定
令P(r)为原始图象的灰度密度函数,P(z)是期望通过匹配的图象灰度密度函数。对P(r)及P(z)作直方图均衡变换,通过直方图均衡为桥梁,实现P(r)与P(z)变换。rjzk直方图匹配变换公式推导图示
步骤:(1)由将各点灰度由r映射成s。(2)由将各点灰度由z映射成v。
步骤:(3)根据v=G(z),z=G-1(v)
由于v,s有相同的分布,逐一取v=s,求出与r对应的z=G-1(s)。离散灰度级情况:由(1)、(2)计算得两张表,从中选取一对vk,sj,使vk≈sj,并从两张表中查得对应的rj,zk。于是,原始图象中灰度级为rj的所有象素均映射成灰度级zk。最终得到所期望的图象。局部增强前面所说的两种处理技术都是全局处理,用于整体增强。在某些情况下,用于增强某个小区域细节的局部增强技术是需要的。局部增强其实就是基于邻域的空间域操作(更详细的讨论在3.5节),前面的方法同样可以使用,但此时处理的是一副图像中的某个子区域。简单实例:直方图统计量用于增强m是图像平均灰度级的测度;而方差,通常表示为2,则代表了图像的平均对照度。这两个量的更有力的应用是在局部增强中,不仅简单、灵活性大,而且局部均值和方差与图像的外观存在紧密的、可预测的对应关系。例:CombineLaplacianandgradienttogetthedetail-enhancedandnoise-compressedimage在某些情况下,用于增强某个小区域细节的局部增强技术是需要的。2)二阶导数对细的细节,如细线和孤立点的响应更强;CombineLaplacianandgradienttogetthedetail-enhancedandnoise-compressedimage分段线性函数的主要有点是其形式可以任意复杂,主要缺点是其说明需要更多的用户输入。前面所说的两种处理技术都是全局处理,用于整体增强。噪声减少可以用可以用线性的或非线性的滤波器来完成。Gamma变换用于通常的对照度操作例:设图象有64*64=4096个象素,有8个灰度级,灰度分布如表所示。当领域为1×1,即只包含当前象素自己时,T成为灰度级变换函数,此时的处理成为点处理。SmoothedGradientasaMask另外,直方图处理是完全“自主”性质的,即该过程所需的参数完全来自图像本身,不需要任何额外的参数,是一种有力的自适应增强工具。实际实现时通常采用如下近似:特点:虽然不象连续情况下时输出灰度完全满足均匀分布,但从该方程明显可以看出,均衡化后的图像比原图像所跨越的灰度级范围更宽。Fourier谱(0~1.两个常用的灰度级变换函数:对照度拉伸和阈值函数除了能提供有关图像的统计特征外,其所包含的信息还能用于其他很多的图像处理技术,如图像分割、图像压缩等。在某些情况下,用于增强某个小区域细节的局部增强技术是需要的。UtilizetheLaplaciantohighlightfinedetail直方图匹配/规定(specification)数字图像处理是一个迅速发展的动态领域,不断有新的技术和应用见于报道。而方差,通常表示为2,则代表了图像的平均对照度。绕在支撑物上钨丝的SEM图像(放大130倍)使用统计量的局部增强结果3.4代数和逻辑运算增强
逻辑操作(二进制掩膜,binarymasking)基于点运算,对两副图像的单个象素进行操作(此时每个象素的值都被看成逻辑值),基本包括与、或、非三者,其他任何逻辑操作都可通过三者之间的组合来完成。逻辑操作通常用于选择ROI(regionofinterest),也常与形态学处理相结合。图像加图像减图像减的重要作用之一是突出图像间的差异,最成功的商业应用是医学图像中的掩码模式X光成像。图像乘图像乘代数运算的应用-平均去噪3.5空间滤波基本步骤:不过当模板的边界超出图像的边界时,要注意边界问题的处理,最常用的方法是填充(padding),但其会影响图像的边界,影响程度随模板尺寸的增大而增加。也称做滤波器(filter)、核(kernel)、模板(template)、窗口(window)。对m×n的掩码(通常要求m,n必须是奇数):这里:a=(m-1)/2,b=(n-1)/2,这种线性空间滤波也通常指“把图像与掩码进行卷积”,掩码也叫“卷积掩码”。从滤波器响应的角度讲,上式也可以简写称:空间平滑滤波器线性平滑滤波器平滑滤波通常被用作模糊图像和减少噪声。模糊处理通常用在预处理阶段,如在目标抽取前用于移除小的细节,或者把线和曲线间的间隙连接起来。噪声减少可以用可以用线性的或非线性的滤波器来完成。邻域平均相当于模板的元素全为1的情况,当还包含其他整数时,更适合的叫法是加权平均。平均法在一定程度上抑制了噪声,但同时也会引起模糊线性,其程度与邻域半径成正比。从左至右,从上到下分别为500×500象素的原图像,和用大小分别为3、5、9、15和35的平方平均滤波器模板对原图像平滑的结果。超限(基于阈值的)邻域平均法:b)排序统计滤波器是一种非线性操作,其响应是基于模板所包含图像区域内象素的排序结果来定的,用得最多的是中值滤波器,此外还有最大、最小滤波器等。中值滤波对脉冲噪声和椒盐噪声(salt-andpeppernoise)特别有效。中值滤波的基本步骤:一般来讲:特点:虽然不象连续情况下时输出灰度完全满足均匀分布,但从该方程明显可以看出,均衡化后的图像比原图像所跨越的灰度级范围更宽。5x5boxsmooth平均法在一定程度上抑制了噪声,但同时也会引起模糊线性,其程度与邻域半径成正比。1)一阶导数产生更厚的边缘;nk2)二阶导数对细的细节,如细线和孤立点的响应更强;(1)由nk以上的方程就是通常所说的直方图均衡化或者线性化。很显然,该方程满足前面所说的两个条件。Thematerialinthislectureisrepresentativeofspatialdomaintechniquescommonlyusedinpracticeforimageenhancement.将各点灰度由z映射成v。直方图匹配/规定(specification)除了能提供有关图像的统计特征外,其所包含的信息还能用于其他很多的图像处理技术,如图像分割、图像压缩等。4)二阶导数在灰度变化相似时,其对线的响应要强于阶跃变化,对点的响应又强于线。对m×n的掩码(通常要求m,n必须是奇数):幂律变换的一个最好应用是伽马校正(Gammacorrection)这里:a=(m-1)/2,b=(n-1)/2,这种线性空间滤波也通常指“把图像与掩码进行卷积”,掩码也叫“卷积掩码”。1)数字化参数的选择:将各点灰度由z映射成v。这里:a=(m-1)/2,b=(n-1)/2,这种线性空间滤波也通常指“把图像与掩码进行卷积”,掩码也叫“卷积掩码”。空间锐化滤波器一阶导数和二阶导数的特征:1)一阶导数产生更厚的边缘;2)二阶导数对细的细节,如细线和孤立点的响应更强;3)一阶导数对灰度的阶跃变化响应更强烈,而二阶导数则会在此产生双响应;4)二阶导数在灰度变化相似时,其对线的响应要强于阶跃变化,对点的响应又强于线。二阶导数增强-Laplacian算子具有各向同性特征的线性变换算子:Laplacian算子(相当于线性高通滤波器)离散实现:其具有90度旋转不变性,当对角方向的不变性(45度方向)也加上时,即得到如下右图的掩码:通过把原图像与锐化处理结果相减,可以既保留锐化效果,同时能恢复图像的背景特征。反锐化掩膜和高提升滤波(unsharpmaskingandhigh-boostfiltering)见教材p132,自学一阶导数增强-梯度算子在不再特殊说明时,通常把梯度矢量的幅度称为梯度。其具有旋转不变性。实际实现时通常采用如下近似:尽管其计算简单,也能反映灰度变化,但丧失了各向同性特征一阶导数算子的数字近似:a)Robert交叉梯度算子b)Sobel梯度算子3×3掩模图:一阶导数检测隐形眼镜边缘缺陷3.6空间增强方法的联合应用(实验)Frequently,agivenenhancementtaskwillrequireapplicationofseveralcomplementaryenhancementtechniquesinordertoachieveanacceptableresult.Theimageshownleftisanuclearwholebodybonescan,usedtodetectdiseasessuchasboneinfectionandtumors.Theobjectiveistoenhancethisimagebysharpeningitandbybringingoutmoreoftheskeletaldetail.Thenarrowdynamicrangeofthelowgraylevelsandhighnoisecontentmakethisimagedifficulttoenhance.TheStrategyUtilizetheLaplaciantohighlightfinedetailUtilizethegradienttoenhanceprominentedgesCombineLaplacianandgradienttogetthedetail-enhancedandnoise-compressedimageIncreasethecontrastoflowgraylevelsbyusingagray-leveltransformation.LaplacianEnhancementArathernoisysharpenedimageisexpected.MedianfilterisincapableofremovingnoiseinsuchmedicalimagesSmoothedGradientasaMaskTheresponseofthegradienttonoiseandfinedetailislowerthantheLaplacian’sandcanbeloweredfurtherbysmoothingthegradientwithanaveragingfilter.WecansmooththegradientandmultiplyitbytheLaplacianenhancedimage.Inthiscasethesmoothedgradientmaybeviewedasamaskimage.5x5boxsmoothmaskimageTheSharpenEnhancedImageThefinalsharpenenhancedimagecanbeobtainedfromthesumoforiginalimageandthesharpenedimagewhichcomesfromtheproductofLaplacianenhancedimageandthesmoothedSobelgradient.addtotheoriginalsharpenenhancedimageLaplacianenhancedsmoothedSobelgradientsharpenedimagestrongedgesandtherelativelackofvisiblenoiseContrastStretchandthefinalResultThefinalstepinthisenhancementtaskistoincreasethecontrastofthesharpenedimage.Thereareanumberofgrayleveltransformationfunctionsthatcanaccomplishthisobjective.Thedarkcharacteristicsoftheimageslendthemselvestoapower-lawtransformation.Significantnewdetailisvisibleintheresult,includingthefaintdefinitionoftheoutlineofthebody,andofbodytissue.c=1
γ=0.5OverviewoftheProcessingFlowintheLastExampleOriginalimageLaplacianenhancedSobelgradientBoxfiltersmoothedSharpendedSharpenenhancedPower-lawstretchOutputThewayinwhichtheresultsareuseddependsontheapplicationandtheuser.Enhancedimagesarequiteusefulinhighlightingdetailsthatcanserveascluesforfurtheranalysisintheoriginalimageorsequenceofimages.Therearemanyareasinwhichtheenhancedresultmayindeedbethefinalproduct,andtheprincipalobjectiveofenhancementistoobtainanimagewithahighercontentofvisualdetail.SummaryThisareaofimageprocessingisadynamicfield,andnewtechniquesandapplicationsarereportedroutinelyinprofessionalliteratureandinnewproductannouncements.Forthisreason,thetopicsincludedinthislecturewereselectedfortheirvalueasfundamentalmaterialthatwouldserveasafoundationforunderstandingthestateoftheartinenhancementtechniques,aswellasforfurtherstudyinthisfield.Thematerialinthislectureisrepresentative
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一季度GDP大超预期怎么看、怎么办
- PHP程序设计项目化教程电子教案9 文本内容过滤器-数据处理
- 2025年电动钓鱼船项目可行性研究报告
- 2025年球类推车项目可行性研究报告
- 山东旅游职业学院《地质与文化遗产概况》2023-2024学年第一学期期末试卷
- 昆明市重点中学2025年高三毕业班3月份摸底调研考试生物试题含解析
- 上海交大南洋中学2025届高三第二次诊断考试生物试题含解析
- 华北理工大学冀唐学院《品牌传播庞铁明》2023-2024学年第二学期期末试卷
- 2025春新版【一年级下册语文】 全册1-8单元成语解释
- 长春建筑学院《工科大学化学-无机与结构化学基础B》2023-2024学年第二学期期末试卷
- 国开学习行为表现(通用11篇)
- GB/T 43359-2023印染废水膜法集成装备
- 废气治理设施运行管理规程制度
- 西安庆华民用爆破器材股份有限公司百色分公司增雨防雹火箭弹生产线建设项目环评报告
- 智能建造施工技术应用实施方案
- 机械设计说明书-多功能自动跑步机机械部分设计
- 英语小故事(中英文对照)课件
- 《古罗马人的数字》课件
- 2022-2023学年上海市徐汇区世界外国语中学八年级(下)期中物理试卷
- 注塑工艺培训-课件
- 钓鱼中各种氨基酸诱食剂说明书及使用方法
评论
0/150
提交评论