




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1010120001解:31101400005001060100111111010021121004,求215124251098100420020220;2112122128012910040410124052;212112125216441010040421016215.12314321A0321,B53040321250123143213A-2B30321253040321250369382110550963106210156112096241001041961212A2121,B2121,求1234010112124解:1)3AB32121212340363646363236912012110111315218282;0137913210112124(2)2A3B2212132112340124241293144242636322468030321212413XAB2121212141234010116511140;35101025533Y2(AB)202020113324317473211355701577201492(1)22243(1)323613214001211341314026710313112512101240230043。00300091000解:A200020201010230B02120,304510102300226230022612014,AC12014;3045(3)BA(AB)T26T241461。311110311311311100f(A)A2AE312312312010110110110001133531110092414253120101103。0011100011121111A2AA0AE11110011001143;123343101cossinsincos;(3)210;32512341230123.789001200011170,故A1存在,A113A211A1241A*1317A414A11A*A(3)A21020,A1存在,A115,A1210,A137,A212,A222,325A2352,A311,A322,A3311A*5(4)A211A232,A314,A325,A332A11(5)A4A221,A230,A240,A311A322,A331,A340,A410,A421,A432,A441121A11A*0121A000012313A221,B21533433133523152112131131315201123152025210402104。25B46C2421,35161224(1)AXBXA354622312210XABXBA1463518321258AXBCXA1CB13524122111682452x1x2x343x2x4x11x12x23x313x5xx3211A342,Xx2,B11,则原方程组为AXB324332126611811118111123351323134A22515,A1138112033A110,ABA2B,求B.123x0233A2E110,A2E2,1211331113111133033033B(A2E)1A1113110123111123110101101001201100102若A0,则由AAAEAAAEAn,∴AAn1AA1(A1)*A1E1E,∴(A1)*1A,即(A1)*(A*)11AAAAT(A*)T(A*A)T(AE)TAE10011003011410000060。011414而P3,P1110111002021114100211113121142116836844213273127321112.设APP1,1111122233解:∵P1026,P*301P*10112111111361200000(5)000111120010200011100034441444214440131212420010630010213B124,12kEkA100kE0B10BBE,630,202Bk2k4k0k0;00k221A1212063002010121011100120E0BAE,B1BB1110B10B41AB12,211,320则ABBAB,10102433120111312433。1131,B1Ba1Ab10B其中A1=0a,21b,a0b01a1b,则AB11,ABA111A1B1A1aa2a1,A2B2A2b2b2b13b2a2a3a2a21b32b2b21344300002022AO8A18A2O34434320,令A3422A1AAA8A18A8A18A281016540O054A24OOAFACD113X4XX2BXBX0EAX3AX4E0AX3EX3A1AX0X0,即D11BXEXB1F11X3X4BXAX2CX4E0X1A1AXCX0BX0X0BXEXB1BB,则A1112,A2123255820011001A0830521202510A21023058A1AA1A1,A31A2A1116824A3126511124120001200130A1AA1214123441130243(1)2225;(2)01113;(3)33511120312230731333423137120241341732834723741470243rr1112r2r1112rr解:1)2225225001111202430243434120215101112r11r21r310100243(行阶梯形矩阵)20120(行最简形矩阵)0001(r23r3)0001123011130731234011100240010r12r2r301r2r3000011333522333411000000441213r3r15r20131r47r2001300r3008013126(行最简形矩阵)44132643r23r141r32r120r43r121113400480036005101011000000343122000(行阶梯形矩阵)0000231222312(4)322312010000137r12r212024r33r2010r42r20831rr07024r47r28912r3r47811024r12r210202r2r3011034(行阶梯形矩阵)r2(1)00014(行最简形矩阵)000006r4r314714713417r13r201314r37r201314473r2r3072145000143(行阶rr00147310001051050r14r201314r59r01301)0001r214r300010000000r33r2141414501122r2101122r45r2012rrr5r51051051005100510145103012000012000(行最简形矩阵)1400002020120r3r120r12r2106A1113320031213013013008800110001000110013.设001A001011001解:001A001010014710258,求A.013690014714710258可以写成E(2,3)AE(3,1(1))25801369369147147从而AE(2,3)1258E(3,1(1))1E(2,3)258E(3,1(1))369369147647369E(3,1(1))669258658101(1)210;3251233433201132(3)301232.1101100101100r2r101(A,E)21001012210325001r33r102230110100100511r2r3012210010511002721r32001711511A151121200123100rrr12312(2)(A,E)221010r22r10252103430010011111032110013352010r25r30203652001111r(1)00111111132100r3r1(A,E)30101021100131013210001111201043101r44r2000097310431011236100113r2r3010237001349113237349320111232001r3r40040r13r30212320103021034r22r11102r1r300341610011240113121610112411321610123253434312325rrr12(A,B)221313120251934343r22r100113101100302062201023r25r300113r(1)0011∴XA1B234236.求解矩阵方程XAA2X,其中A110。123211411rr21141132212212212213013031111110112332r3r111111103403111111011330016691003220108912001669386∴X2962129228912669三阶子式1000,1000。563123131111;2)A3153;3)A1121;428212213443213
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【高一】【志存高远踏新程 脚踏实地创未来】开学第一课 -文字稿
- 分数的初步认识复习(教案)2024-2025学年数学三年级上册 苏教版
- 六年级下册数学教案-总复习18 数形结合思想 青岛版
- 三年级下册数学教案-第七单元小数的初步认识 青岛版
- 第23课《孟子三章:得道多助失道寡助》教学设计 2024-2025学年统编版语文八年级上册
- 2025年学习雷锋精神六十二周年主题活动方案 汇编3份
- Unit 4 Position Lesson 1 The Magic Show(教学设计)-2024-2025学年北师大版(三起)英语五年级上册
- 2025年河北省石家庄市单招职业倾向性测试题库参考答案
- 2025年黑龙江冰雪体育职业学院单招职业适应性测试题库1套
- 2025年杭州职业技术学院单招职业适应性测试题库附答案
- 2025年车位买卖合同模板电子版
- AI创作指令合集系列之-教案写作指令
- 关于投资协议书范本5篇
- 《反电信网络诈骗法》知识考试题库150题(含答案)
- 2025年上海市各区初三一模语文试卷(打包16套无答案)
- 2024 原发性肝癌诊疗指南 更新要点课件
- 《圆柱与圆锥-圆柱的表面积》(说课稿)-2023-2024学年六年级下册数学人教版
- 【8语期末】芜湖市2024-2025学年八年级上学期期末考试语文试题
- 常用临床检验结果解读
- 2025年浙江省金华义乌市人社局招聘雇员历年高频重点提升(共500题)附带答案详解
- 老年痴呆患者护理课件
评论
0/150
提交评论