四川省广元市太公中学高一数学文测试题含解析_第1页
四川省广元市太公中学高一数学文测试题含解析_第2页
四川省广元市太公中学高一数学文测试题含解析_第3页
四川省广元市太公中学高一数学文测试题含解析_第4页
四川省广元市太公中学高一数学文测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广元市太公中学高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,则,,的大小顺序为(

).

.

.

.参考答案:C略2.()

A. B. C.- D.-参考答案:B3.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为()A. B. C. D.参考答案:A【分析】根据题意,得出该几何体左视图的高和宽的长度,求出它的面积,即可求解.【详解】根据题意,该几何体左视图的高是正视图的高,所以左视图的高为,又由左视图的宽是俯视图三角形的底边上的高,所以左视图的宽为,所以该几何体的左视图的面积为,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.4.若在△ABC中,sinA:sinB:sinC=3:5:6,则sinB等于()A. B. C. D.参考答案:A【考点】HR:余弦定理;HP:正弦定理.【分析】由已知及正弦定理可得a:b:c=3:5:6,设a=3k,b=5k,c=6k,k∈Z,由余弦定理可得cosB=,结合B为锐角,利用同角三角函数基本关系式可求sinB的值.【解答】解:在△ABC中,∵sinA:sinB:sinC=3:5:6,∴a:b:c=3:5:6,则可设a=3k,b=5k,c=6k,k∈Z,∴由余弦定理可得:cosB===,∴由b<c,B为锐角,可得sinB==.故选:A.5.已知四面体ABCD的四个面都为直角三角形,且AB⊥平面BCD,,若该四面体的四个顶点都在球O的表面上,则球O的表面积为(

)A.3π B. C. D.12π参考答案:D【分析】由已知中的垂直关系可将四面体放入正方体中,求解正方体的外接球表面积即为所求的四面体外接球的表面积;利用正方体外接球半径为其体对角线的一半,求得半径,代入面积公式求得结果.【详解】且为直角三角形

又平面,平面

平面由此可将四面体放入边长为的正方体中,如下图所示:正方体的外接球即为该四面体的外接球正方体外接球半径为体对角线的一半,即球的表面积:本题正确选项:【点睛】本题考查多面体的外接球表面积的求解问题,关键是能够通过线面之间的位置关系,将所求四面体放入正方体中,通过求解正方体外接球来求得结果.6.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;

②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;

④若a⊥γ,b⊥γ,则a∥b其中真命题的序号是A.①②

B.②③

C.①④

D.③④参考答案:C7.设全集U={1,2,3,4,5,6},A={1,3,5},则的所有非空子集的个数为()A.8B.3

C.4

D.7参考答案:D略8.函数的定义域为(

A.

B.

C.

D.参考答案:B略9.已知函数在(0,2]上恰有一个最大值点和一个最小值点,则的取值范围是()A. B.C. D.参考答案:C【分析】由正弦型函数的性质,根据函数在(0,2]上恰有一个最大值点和一个最小值点,得到且,即可求解,得到答案.【详解】由于,在当时,第一个最大值出现在,第一个最小值出现在,第二个最大值出现在,由于函数在上恰有一个最大值点和一个最小值点,所以:,所以且,解得:且,故的取值范围是.故选:C.

10.若a=20.5,b=0.32.1,c=log5,d=log5,则(

)A.b>a>c>d B.b>a>d>c C.a>b>d>c D.a>b>c>d参考答案:C【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】根据指数函数和对数函数的性质判断取值范围进行求解即可.【解答】解:a=20.5∈(1,2),b=0.32.1∈(0,1),c=log5=<0,d=log5=<0,∵,∴<<0,即c<d<0,则a>b>d>c,故选:C.【点评】本题主要考查函数值的大小比较,根据指数函数和对数函数的性质判断a,b,c,d的符号和范围是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.对于函数,有下列3个命题:①任取,都有恒成立;②,对于一切恒成立;③函数在上有3个零点;则其中所有真命题的序号是

.参考答案:①③12.(3分)在△ABC中,A为最小角,C为最大角,已知cos(2A+C)=﹣,sinB=,则cos2(B+C)=

.参考答案:考点: 二倍角的余弦.专题: 三角函数的求值.分析: 依题意,可求得cos(A﹣B)=,继而可得sin(A﹣B)=﹣,再由sinB=,求得cosB=,利用两角和的余弦可求得cosA,于是可求得cos2(B+C)=cos=cos2A的值.解答: 在△ABC中,cos(2A+C)=cos=﹣cos(A﹣B)=﹣,所以,cos(A﹣B)=,又A为最小角,C为最大角,∴A﹣B<0,∴sin(A﹣B)=﹣;又sinB=,B为锐角,∴cosB==,∴cosA=cos=cos(A﹣B)cosB﹣sin(A﹣B)sinB=×﹣(﹣)×=,∴cos2(B+C)=cos=cos2A=2cos2A﹣1=2×﹣1=.故答案为:.点评: 本题考查三角函数的化简求值,着重考查两角和的余弦、二倍角的余弦及同角三角函数间关系式的综合应用,属于中档题.13.(5分)函数f(x)=cos(ωx+φ)(ω>0,0<φ<π)为R上的奇函数,该函数的部分图象如图所表示,A,B分别为最高点与最低点,并且两点间的距离为2,现有下面的3个命题:(1)函数y=|f(x)|的最小正周期是2;(2)函数在区间上单调递减;(3)直线x=1是函数y=f(x+1)的图象的一条对称轴.其中正确的命题是

.参考答案:(1)考点: 命题的真假判断与应用.专题: 三角函数的图像与性质;简易逻辑.分析: 根据三角函数的奇偶性求出φ的值,由最高点与最低点间的距离、勾股定理求出ω的值,即求出函数的解析式,利用y=|sinx|的周期求出函数y=|f(x)|的最小正周期,从而判断(1);根据正弦函数的单调性判(2);利用余弦函数的对称轴判断(3).解答: 因为函数f(x)=cos(ωx+φ)(ω>0,0<φ<π)为R上的奇函数,所以φ=,则函数f(x)=sin(ωx),设函数f(x)=sin(ωx)的周期是T,因为A,B分别为最高点与最低点,并且两点间的距离为2,所以,解得T=4,即4=,则ω=,所以f(x)=sin(x),对于(1),则函数y=|f(x)|=|sin(x)|的最小正周期是=2,(1)正确;对于(2),因为f(x)=sin(x),所以函数=sin,由x∈得,(x﹣)∈,所以在上递增,(2)错误;对于(3),因为f(x)=sin(x),所以函数y=f(x+1)=sin=cos(x),当x=1时,x=,所以直线x=1不是函数y=f(x+1)的图象的一条对称轴,(3)错误,综上得,正确的命题是(1),故答案为:(1).点评: 本题考查命题真假的判断,主要利用三角函数的性质进行判断,比较综合,属于中档题.14.在△ABC中,若?=?,|+|=|﹣|,则角B的大小是.参考答案:45°【考点】平面向量数量积的运算.【专题】数形结合;数形结合法;平面向量及应用.【分析】由|+|=|﹣|可知=0,建立平面直角坐标系,设出各点坐标,利用数量积相等列出方程得出直角边的关系,得出∠B的大小.【解答】解:∵|+|=|﹣|,∴=0,∴.以AC,AB为坐标轴建立平面直角坐标系,设C(a,0),B(0,b),A(0,0).则=(0,b),=(a,﹣b),=(﹣a,0).∵?=?,∴﹣b2=﹣a2,∴a=b,∴△ABC是到腰直角三角形,∴B=45°.故答案为:45°.【点评】本题考查了平面向量的数量积运算,建立坐标系进行坐标运算是解题关键.15.在数列{an}中,,则____.参考答案:18【分析】直接利用等比数列的通项公式得答案.【详解】解:在等比数列中,由,公比,得.故答案为:18.【点睛】本题考查等比数列的通项公式,是基础题.16.若数列{an}满足:,,则前8项的和_________.参考答案:255【分析】根据已知判断数列为等比数列,由此求得其前项和.【详解】由于,故数列是首项为,公比为的等比数列,故.【点睛】本小题主要考查等比数列的定义,考查等比数列前项和公式,属于基础题.17.已知,,且为锐角,则___________.参考答案:试题分析:由,两式平方相加得:,即有,由为锐角,且,知,从而得,因此,所以,观察式子的结构特点,注意解题技巧的积累.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分) 已知,,且∥,(1)求的值;(2)求的值.参考答案:(1)∵,,且∥,

∴,---------------------------------------------------3分

∴,解得.---------------------------------------6分

(2)由(1)知,

==

---------------------------------------9分

==----------------------------------------------------------------------12分

另解:由(1)知∴,又∴∴

--------------------------------------------------------------------------9分∴==

--------------------------------------------------------12分19.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元,(1)分别写出两类产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资

获得最大收益,其最大收益是多少万元?参考答案:略20.参考答案:解析:(1),且过,则当时,而函数的图象关于直线对称,则即,(2)当时,,

当时,

为所求。21.如图所示,四棱锥S-ABCD的底面是边长为1的菱形,其中∠DAB=60°,SD垂直于底面ABCD,SB=.

(1)求四棱锥S-ABCD的体积;(2)设棱SA的中点为M,求异面直线DM与SC所成角的余弦值.参考答案:(1);(2).【分析】(1)连结,易知BD为棱锥的高,结合棱锥的特征计算可得四棱锥的体积.(2)解法一:取中点,连结、,由几何体的特征可知为异面直线与所成的角,计算可得,即异面直线与所成的角的大小为.解法二:如图以为原点,建立空间直角坐标系,结合点的坐标可得,∵,,则,异面直线与所成的角的大小为.【详解】(1)连结,平面,平面,∴,为边长为1的菱形,且,∴,,∴,,∴,∴.(2)解法一:取中点,连结、,∴且,∴为异面直线与所成的角,又∵在中,,∴,同时,,∴为等边三角形,∴,即异面直线与所成的角的大小为.解法二:如图以为原点,建立空间直角坐标系,其中,设与交于点,则,∴,又,∴,即,∵,∴,∴,即异面直线与所成的角的大小为.【点睛】本题主要考查棱锥的体积公式,异面直线所成的角的计算,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.22.如图,直三棱柱中,、分别是棱、的中点,点在棱上,已知,,.(1)求证:平面;(2)设点在棱上,当为何值时,平面平面?参考答案:解:(1)连接交于,连接.

因为CE,AD为△ABC中线,所以O为△ABC的重心,.从而OF//C1E.………………3分OF面AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论