版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.随机变量2.离散型随机变量3.离散型随机变量的分布列复习回顾ξX1X2…Xi…PP1P2…Pi…2.1.2两点分布与超几何分步
离散型随机变量的分布列具有下述两个性质:2.1.2两点分布与超几何分步例:已知随机变量的分布列如下:-2-13210分别求出随机变量⑴;⑵的分布列.2.1.2两点分布与超几何分步练习:从装有6只白球和4只红球的口袋中任取一只球,用X表示“取到的白球个数”,即求随机变量X的概率分布2.1.2两点分布与超几何分步2.1.2离散型随机变量的分布列(2)高二数学选修2-32.1.2两点分布与超几何分步两点分布列的运用非常广泛.试举一个例子.特殊的分布:2.1.2两点分布与超几何分步特殊的分布:“0-1”分布(两点分布):特点:随机变量X的取值只有两种可能记法:X~0-1分布或X~两点分布“~”表示服从2.1.2两点分布与超几何分步两点分布是最简单的一种分布,任何一个只有两种可能结果的随机现象,比如新生婴儿是男还是女、明天是否下雨、种籽是否发芽等,都属于两点分布.说明练习:1、设某项试验的成功率是失败率的2倍,用随机变量
去描述1次试验的成功次数,则失败率p等于()
A.0B.C.D.C
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件{X=k}发生的概率为超几何分布X01…mP…称分布列为超几何分布2.1.2两点分布与超几何分步课本49页练习3小结1.两点分布2.超几何分布这节课你学到了什么呢?2.1.2两点分布与超几何分步例3:从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出直到取出合格品为止时所需抽取的次数的分布列.解:分布列为:的所有取值为:1、2、3、4.(1)每次取出的产品都不放回此批产品中;43212.1.2两点分布与超几何分步例3:从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出直到取出合格品为止时所需抽取的次数的分布列.解:的所有取值为:1、2、…、k、….(2)每次取出的产品都放回此批产品中;分布列为:12…k………2.1.2两点分布与超几何分步练两个:1.袋中有个5红球,4个黑球,从袋中随机取球,设取到一个红球得1分,取到一个黑球得0分,现从袋中随机摸4个球,求所得分数X的概率分布列。2.在一次英语口语考试中,有备选的10道试题,已知某考生能答对其中的8道试题,规定每次考试都从备选题中任选3道题进行测试,至少答对2道题才算合格,求该考生答对试题数X的分布列,并求该考生及格的概率。2.1.2两点分布与超几何分步思考.某射手有5发子弹,射击一次命中的概率为0.9,⑴如果命中了就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列;⑵如果命中2次就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列.探究问题甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的分布列.x
0123P2.1.2两点分布与超几何分步变式2.从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽到的可能性相同.每次取出一件次品后,总有一件合格品放进此批产品中,求直到取出一个合格品为止时所需抽取次数Z的概率分布表.2.1.2两点分布与超几何分步3.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为。现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取到的机会是等可能的,用表示取球终止时所需要的取球次数。(1)求袋中原有白球的个数;(2)求随机变量的概率分布;(3)求甲取到白球的概率。2.1.2两点分布与超几何分步例.某同学向如图所示的圆形靶投掷飞镖,飞镖落在靶外的概率为0.1,飞镖落在靶内的各个点是随机的.已知圆形靶中三个圆为同心圆,半径分别为20cm,10cm,5cm,飞镖落在不同区域的环数如图所示,设这位同学投掷一次得到的环数为X,求随机变量X的分布列10892.1.2两点分布与超几何分步例.一个袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为1/7,现在甲、乙两人从袋中轮流摸取一球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的(1)求袋中原有白球的个数;(2)用X表示取球终止时所需要的取球次数,求随机变量X的概率分布;(3)求甲取到白球的概率;2.1.2两点分布与超几何分步例.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1/3,用X表示这5位乘客在第20层下电梯的人数,求随机变量X的分布列2.1.2两点分布与超几何分步例4:已知随机变量的分布列如下:-2-13210分别求出随机变量⑴;⑵的分布列.解:∴的分布列为:⑵由可得的取值为0、1、4、909412.1.2两点分布与超几何分步变式引申:1、某射手射击目标的概率为0.9,求从开始射击到击中目标所需的射击次数的概率分布。2、数字1,2,3,4任意排成一列,如果数字k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能硬件创新企业评审
- 国际工艺品设备租赁协议
- 通信设备运输招投标文件
- 会员消费IC卡积分规则
- 无人机驾驶员聘用合同范本
- 执行院务公开管理办法
- 铁路工程供货施工合同范本
- 金属材料采购授权委托书
- 通讯设备项目奖励政策
- 煤炭供应商运输合作协议
- 2024年广东省普通高中学业水平考试化学试卷(修改+答案)版
- 2024年小学生中华经典诵读知识竞赛参考题库500题(含答案)
- 2024年四川遂宁开祺资产管理有限公司招聘笔试参考题库含答案解析
- 有机肥料及微生物肥料行业的环境影响与生态保护
- 提高检验标本合格率的品管圈课件
- 日拱一卒行稳致远
- 幼儿园教育的德育培养
- 培训内驱力的课件
- 管理后台策划方案
- 顺丰SHL在线测评题库
- 贵州省黔东南州2022-2023学年八年级上学期期末文化水平测试数学试卷(含答案)
评论
0/150
提交评论