第五章-数学形态学及其应用课件_第1页
第五章-数学形态学及其应用课件_第2页
第五章-数学形态学及其应用课件_第3页
第五章-数学形态学及其应用课件_第4页
第五章-数学形态学及其应用课件_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章数学形态学及其应用5.1引言5.2二值形态学5.3形态学的应用5.1引言5.1.1数学形态学数学形态学的基本思想是用具有一定形态的结构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。

数学形态学的数学基础和所用语言是集合论。数学形态学的应用可以简化图像数据,保持它们基本的形状特性,并除去不相干的结构。数学形态学的算法具有天然的并行实现的结构,实现了形态学分析和处理算法的并行,大大提高了图像分析和处理的速度。数学形态学是由一组形态学的代数运算子组成的,它的基本运算有4个:膨胀(或扩张)、腐蚀(或侵蚀)、开启和闭合,它们在二值图像和灰度图像中各有特点。数学形态学方法利用一个称作结构元素的“探针”收集图像的信息,当探针在图像中不断移动时,便可考察图像各个部分之间的相互关系,从而了解图像的结构特征。数学形态学基于探测的思想,与人的FOA(FocusOfAttention)的视觉特点有类似之处。作为探针的结构元素,可直接携带知识(形态、大小、甚至加入灰度和色度信息)来探测、研究图像的结构特点。数学形态学是一门建立在严格数学理论基础上的学科,其基本思想和方法对图像处理的理论和技术产生了重大影响。事实上,数学形态学已经构成一种新的图像处理方法和理论,成为计算机数字图像处理的一个重要研究领域,并且已经应用在多门学科的数字图像分析和处理的过程中。这门学科在计算机文字识别,计算机显微图像分析(如定量金相分析,颗粒分析),医学图像处理(例如细胞检测、心脏的运动过程研究、脊椎骨癌图像自动数量描述),图像编码压缩,工业检测(如食品检验和印刷电路自动检测),材料科学,机器人视觉,汽车运动情况监测等方面都取得了非常成功的应用。另外,数学形态学在指纹检测、经济地理、合成音乐和断层X光照像等领域也有良好的应用前景。形态学方法已成为图像应用领域工程技术人员的必备工具。目前,有关数学形态学的技术和应用正在不断地研究和发展。5.1.2基本符号和术语

1.元素和集合在数字图像处理的数学形态学运算中,把一幅图像称为一个集合。对于二值图像而言,习惯上认为取值为1的点对应于景物中心,用阴影表示,而取值为0的点构成背景,用白色表示,这类图像的集合是直接表示的。考虑所有值为1的点的集合为A,则A与图像是一一对应的。对于一幅图像A,如果点a在A的区域以内,那么就说a是A的元素,记为a∈A,否则,记作a∈A,如图5-1(a)所示。图5-1元素与集合间的关系

3.击中(Hit)与击不中(Miss)设有两幅图像A和B,如果A∩B≠,那么称B击中A,记为B↑A,其中是空集合的符号;否则,如果A∩B=,那么称B击不中A,如图5-3所示。图5-3击中与击不中(a)B击中A;(b)B击不中A

4.平移和反射设A是一幅数字图像(见图5-4(a)),b是一个点(见图5-4(b)),那么定义A被b平移后的结果为A+b={a+b|a∈A},即取出A中的每个点a的坐标值,将其与点b的坐标值相加,得到一个新的点的坐标值a+b,所有这些新点所构成的图像就是A被b平移的结果,记为A+b,如图5-4(c)所示。A关于图像原点的反射结果Av={a|-a∈A},即将A中的每个点取相反数所得的新图像,如图5-4(d)所示。图5-4平移与反射

5.目标和结构元素被处理的图像称为目标图像,一般用大写英文字母表示。为了确定目标图像的结构,必须逐个考察图像各部分之间的关系,并且进行检验,最后得到一个各部分之间关系的集合。在考察目标图像各部分之间的关系时,需要设计一种收集信息的“探针”,称为“结构元素”。“结构元素”一般用大写英文字母表示,例如用S表示。在图像中不断移动结构元素,就可以考察图像之间各部分的关系。一般,结构元素的尺寸要明显小于目标图像的尺寸。5.2二值形态学二值形态学中的运算对象是集合。设A为图像集合,S为结构元素,数学形态学运算是用S对A进行操作。对每个结构元素可以指定一个原点,它是结构元素参与形态学运算的参考点。以下用阴影代表值为1的区域,白色代表值为0的区域,运算是对值为1的区域进行的。二值形态学中两个最基本的运算——腐蚀与膨胀,如图5-5所示。图5-5腐蚀与膨胀示意图5.2.1腐蚀腐蚀是最基本的一种数学形态学运算。对一个给定的目标图像X和一个结构元素S,想象一下将S在图像上移动。在每一个当前位置x,S+x只有三种可能的状态(见图5-6):(1)S+xX;(2)S+xXC;(3)S+x∩X与S+x∩XC均不为空。(5-1)图5-6S+x的三种可能的状态第一种情形说明S+x与X相关最大,第二种情形说明S+x与X不相关,而第三种情形说明S+x与X只是部分相关。因而满足式(5-1)的点x的全体构成结构元素与图像最大相关点集,这个点集称为S对X的腐蚀(简称腐蚀,有时也称X用S腐蚀),记为XS。腐蚀也可以用集合的方式定义,即式(5-2)表明,X用S腐蚀的结果是所有使S平移x后仍在X中的x的集合。换句话说,用S来腐蚀X得到的集合是S完全包括在X中时S的原点位置的集合。上式也可以帮助我们借助相关概念来理解腐蚀操作。(5-2)式(5-2)表明,X用S腐蚀的结果是所有使S平移x后仍在X中的x的集合。换句话说,用S来腐蚀X得到的集合是S完全包括在X中时S的原点位置的集合。上式也可以帮助我们借助相关概念来理解腐蚀操作。腐蚀在数学形态学运算中的作用是消除物体边界点。如果结构元素取3×3的像素块,腐蚀将使物体的边界沿周边减少一个像素。腐蚀可以把小于结构元素的物体(毛刺、小凸起)去除,这样选取不同大小的结构元素,就可以在原图像中去掉不同大小的物体。如果两个物体之间有细小的连通,那么当结构元素足够大时,通过腐蚀运算可以将两个物体分开。

例5-1腐蚀运算图解。图5-7给出腐蚀运算的一个简单示例。其中,图5-7(a)中的阴影部分为集合X,图5-7(b)中的阴影部分为结构元素S,而图(c)中黑色部分给出了XS的结果。由图可见,腐蚀将图像(区域)收缩小了。图5-7腐蚀运算示例如果S包含了原点,即O∈S,那么XS将是X的一个收缩,即XSX(当O∈S时);如果S不包含原点,那么XSX未必成立。如果结构元素S关于原点O是对称的,那么S=SV,因此XS=XSV,但是,如果S关于原点O不是对称的,那么X被S腐蚀的结果与X被SV腐蚀的结果是不同的。图5-8用3×3的结构元素进行腐蚀(a)原始二值图像;(b)腐蚀结果(a)(b)5.2.2膨胀腐蚀可以看作是将图像X中每一与结构元素S全等的子集S+x收缩为点x。反之,也可以将X中的每一个点x扩大为S+x,这就是膨胀运算,记为XS。若用集合语言,它的定义为XS={x|S+x∪x≠}(5-3)5.2.3开、闭运算如果结构元素为一个圆盘,那么,膨胀可填充图像中的小孔(比结构元素小的孔洞)及图像边缘处的小凹陷部分,而腐蚀可以消除图像边缘小的成分,并将图像缩小,从而使其补集扩大。但是,膨胀和腐蚀并不互为逆运算,因此它们可以级连结合使用。在腐蚀和膨胀两个基本运算的基础上,可以构造出形态学运算族,它由膨胀和腐蚀两个运算的复合与集合操作(并、交、补等)组合成的所有运算构成。例如,可先对图像进行腐蚀然后膨胀其结果,或先对图像进行膨胀然后腐蚀其结果(这里使用同一个结构元素)。前一种运算称为开运算(或开启),后一种运算称为闭运算(闭合)。开运算和闭运算是形态学运算族中两个最为重要的组合运算。

对图像X及结构元素S,用符号X○S表示S对图像X作开运算,用符号X●S表示S对图像X作闭运算,它们的定义为X○S=(XS)S

X●S=(XS)S

由式(5-4)和式(5-5)可知,X○S可视为对腐蚀图像XS用膨胀来进行恢复,而X●S可看作是对膨胀图像XS用腐蚀来进行恢复。不过这一恢复不是信息无损的,即它们通常不等于原始图像X。(5-4)(5-5)图5-9给出了两个开运算的例子,其中图5-9(a)是结构元素S1和S2,图5-9(b)是用S1对X进行开运算的结果,图5-9(c)是用S2对X进行开运算的结果。当使用圆盘结构元素时,开运算对边界进行了平滑,去掉了凸角;当使用线段结构元素时,沿线段方向宽度较大的部分才能够被保留下来,而较小的凸部将被剔除。而X-X○S给出的是图像的凸出特征。可见,不同的结构元素的选择导致了不同的分割,即提取出不同的特征。图5-9开运算去掉了凸角(a)结构元素S1和S2;(b)X○S1;(c)X○S2

开、闭变换也是一对对偶变换,因此,闭运算的几何意义可以由补集的开运算的几何意义导出。图5-10给出了两个闭运算的例子,其中,图5-10(a)是结构元素S1和S2,图5-10(b)是用S1对X进行闭运算的结果,图5-10(c)是用S2对X进行闭运算的结果。可见,闭运算通过填充图像的凹角来平滑图像,而X●S-X给出的是图像的凹入特征。图5-10闭运算填充了凹角(a)结构元素S1和S2;(b)X●S1;(c)X●S2图5-11开、闭运算示例(a)原图像;(b)结构元素S;(c)结构元素S腐蚀图像X;(d)结构元素S腐蚀X的结果;(e)对腐蚀的结构再膨胀;(f)再膨胀(开运算)的结果X○S;(g)结构元素S膨胀X;(h)结构元素S膨胀X的结果XS;(i)对膨胀的结果再腐蚀;(j)再腐蚀的结果(闭运算)X●S图5-11给出了结构元素对一幅图像分别进行开、闭运算的过程和结果。图5-12开、闭运算效果示意图(a)原始图像;(b)开运算的结果;(c)闭运算的结果

(a)(b)(c)图5-12是用3*3的结果元素对文字图像的开、闭运算的结果。5.3形态学的应用5.3.1形态学滤波由于开、闭运算所处理的信息分别与图像的凸、凹处相关,因此,它们本身都是单边算子,可以利用开、闭运算去除图像的噪声、恢复图像,也可交替使用开、闭运算以达到双边滤波目的。一般,可以将开、闭运算结合起来构成形态学噪声滤波器,例如(X○S)●S或(X●S)○S等。图5-23给出消除噪声的一个图例。图5-23(a)包括一个长方形的目标X,由于噪声的影响在目标内部有一些噪声孔而在目标周围有一些噪声块。现在用图5-23(b)所示的结构元素S通过形态学操作来滤除噪声,这里的结构元素应当比所有的噪声孔和块都要大。先用S对X进行腐蚀得到图5-23(c),再用S对腐蚀结果进行膨胀得到图5-23(d),这两个操作的串行结合就是开运算,它将目标周围的噪声块消除掉了。再用S对图5-23(d)进行一次膨胀得到图5-23(e),然后用S对膨胀结果进行腐蚀得到图5-23(f),这两个操作的串行结合就是闭运算,它将目标内部的噪声孔消除掉了。整个过程是先做开运算再做闭运算,可以写为●(5-7)图5-13形态学滤波示意图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论