甘肃省兰州市第九中学2022-2023学年数学高一第二学期期末复习检测模拟试题含解析_第1页
甘肃省兰州市第九中学2022-2023学年数学高一第二学期期末复习检测模拟试题含解析_第2页
甘肃省兰州市第九中学2022-2023学年数学高一第二学期期末复习检测模拟试题含解析_第3页
甘肃省兰州市第九中学2022-2023学年数学高一第二学期期末复习检测模拟试题含解析_第4页
甘肃省兰州市第九中学2022-2023学年数学高一第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,且,则的形状为()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形2.已知在角终边上,若,则()A. B.-2 C.2 D.3.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.4.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值5.已知函数,,的零点分别为a,b,c,则()A. B. C. D.6.将一个底面半径和高都是的圆柱挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,剩余部分的体积记为,半径为的半球的体积记为,则与的大小关系为()A. B. C. D.不能确定7.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为8.若实数满足不等式组,则的最小值是()A. B.0 C.1 D.29.如图是函数的部分图象2,则该解析式为()A. B.C. D.10.如图所示是的图象的一段,它的一个解析式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.12.在中,、、所对的边依次为、、,且,若用含、、,且不含、、的式子表示,则_______.13.在中,,,是角,,所对应的边,,,如果,则________.14.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.15.若角是第四象限角,则角的终边在_____________16.在等比数列中,,公比,若,则达到最大时n的值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,.(1)分别计算,,的值;(2)由(1)猜想出数列的通项公式,并用数学归纳法加以证明.18.在平面直角坐标系中,为坐标原点,三点满足.(1)求证:三点共线;(2)已知的最小值为,求实数的值.19.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.20.已知等比数列的前项和为,,,且.(1)求的通项公式;(2)是否存在正整数,使得成立?若存在,求出的最小值;若不存在,请说明理由.21.已知等比数列的公比,且,.(1)求数列的通项公式;(2)设,是数列的前项和,对任意正整数不等式恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由两角和的正切公式求得,从而得,由二倍角公式求得,再求得,注意检验符合题意,可判断三角形形状.【详解】,∴,∴,由,即.∴或.当时,,无意义.当时,,此时为正三角形.故选:D.【点睛】本题考查三角形形状的判断,考查两角和的正切公式和二倍角公式,根据三角公式求出角是解题的基本方法.2、C【解析】

由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.3、C【解析】

利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.4、C【解析】

根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.5、B【解析】

,,分别为,,的根,作出,,的图象与直线,观察交点的横坐标的大小关系.【详解】由题意可得,,分别为,,的根,作出,,,的图象,与直线的交点的横坐标分别为,,,由图象可得,故选:.【点睛】本题主要考查了函数的零点,函数的图象,数形结合思想,属于中档题.6、C【解析】

根据题意分别表示出,通过比较。【详解】所以,选C。【点睛】,,。记住这几个公式即可,属于基础题目。7、C【解析】

A.时无最小值;

B.令,由,可得,即,令,利用单调性研究其最值;

C.令,令,利用单调性研究其最值;

D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;

B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;

D.当时,,无最小值,故D不正确.

故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.8、A【解析】

画出不等式组的可行域,再根据线性规划的方法,结合的图像与的关系判定最小值即可.【详解】画出可行域,又求最小值时,故的图形与可行域有交点,且往上方平移到最高点处.易得此时在处取得最值.故选:A【点睛】本题主要考查了线性规划与绝对值函数的综合运用,需要根据题意画图,根据函数的图形性质分析.属于中档题.9、D【解析】

根据函数图象依次求出振幅,周期,根据周期求出,将点代入解析式即可得解.【详解】根据图象可得:,最小正周期,,经过,,,,,所以,所以函数解析式为:.故选:D【点睛】此题考查根据函数图象求函数解析式,考查函数的图象和性质,尤其是对振幅周期的辨析,最后求解的值,一般根据最值点求解.10、D【解析】

根据函数的图象,得出振幅与周期,从而求出与的值.【详解】根据函数的图象知,振幅,周期,即,解得;所以时,,;解得,,所以函数的一个解析式为.故答案为D.【点睛】本题考查了函数的图象与性质的应用问题,考查三角函数的解析式的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.12、【解析】

利用诱导公式,二倍角公式,余弦定理化简即可得解.【详解】.故答案为.【点睛】本题主要考查了诱导公式,二倍角的三角函数公式,余弦定理,属于中档题.13、【解析】

首先利用同角三角函数的基本关系求出,再利用正弦定理即可求解.【详解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案为:【点睛】本题考查了同角三角函数的基本关系以及正弦定理解三角形,需熟记公式,属于基础题.14、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.15、第二或第四象限【解析】

根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【点睛】本题主要考查象限角的集合的应用.16、7【解析】

利用,得的值【详解】因为,,所以为7.故答案为:7【点睛】本题考查等比数列的项的性质及单调性,找到与1的分界是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;

(2),证明见解析【解析】

(1)分别令即可运算得出,,的值;(2)由(1)可猜想出,当时成立,再假设当时,成立,再利用推导出即可.【详解】(1)令有;

令有;

令有所以,,(2)由(1)可得,,,,故可猜想.证明:当时,成立;假设当时,成立,且即当时,,即,化简得,,即也满足,当时成立,故对于任意的,有,证毕.所以.【点睛】本题主要考查了数学归纳法的运用,其中步骤为:(1)证明当取第一个值时命题成立.对于一般数列取值为0或1;(2)假设当()且为自然数)时命题成立,证明当时命题也成立.

综合(1)(2),对一切自然数,命题都成立.18、(1)证明过程见解析;(2)【解析】试题分析:(1)只需证得即可。(2)由题意可求得的解析式,利用换元法转换成,讨论的单调性,可知其在上为单调减函数,得可解得的值。(1)证明:三点共线.(2),,令,其对称轴方程为在上是减函数,。点睛:证明三点共线的方法有两种:一、求出其中两点所在直线方程,验证第三点满足直线方程即可;二、任取两点构造两个向量,证明两向量共线即可。在考试中经常采用第二种方法,便于计算。证明四点共线一般采用第一种方法。19、(1)见解析;(1)见解析【解析】

(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消求和,化简运算能力,属于中档题.20、(1);(2)存在,【解析】

(1)根据条件求解出公比,然后写出等比数列通项;(2)先表示出,然后考虑的的最小值.【详解】(1)因为,所以或,又,则,所以;(2)因为,则,当为偶数时有不符合;所以为奇数,且,,所以且为奇数,故.【点睛】本题考查等比数列通项及其前项和的应用,难度一般.对于公比为负数的等比数列,分析前项和所满足的不等式时,注意分类讨论,因此的奇偶会影响的正负.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论