2023届安徽凤台一中数学高一下期末综合测试模拟试题含解析_第1页
2023届安徽凤台一中数学高一下期末综合测试模拟试题含解析_第2页
2023届安徽凤台一中数学高一下期末综合测试模拟试题含解析_第3页
2023届安徽凤台一中数学高一下期末综合测试模拟试题含解析_第4页
2023届安徽凤台一中数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则使函数的定义域是,且为偶函数的所有的值是()A.0,2 B.0,-2 C. D.22.执行如图所示的程序框图,若输人的n值为2019,则S=A.-1 B.-12 C.13.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A. B. C. D.4.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]5.下列各角中,与126°角终边相同的角是()A. B. C. D.6.过两点A,B(,的直线倾斜角是,则的值是()A.B.3C.1D.7.已知,满足,则()A. B. C. D.8.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.29.若,则t=()A.32 B.23 C.14 D.1310.在复平面内,复数满足,则的共轭复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递减区间为______.12.已知点A(-a,0),B(a,0)(a>0),若圆(x-2)2+(y-2)2=2上存在点C13.数列的前项和,则__________.14.在,若,,,则__________________.15.已知数列{an}的前n项和为Sn,满足:a2=2a1,且Sn=+1(n≥2),则数列{an}的通项公式为_______.16.不等式的解集为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.18.扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?19.在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.20.已知不经过原点的直线在两坐标轴上的截距相等,且点在直线上.(1)求直线的方程;(2)过点作直线,若直线,与轴围成的三角形的面积为2,求直线的方程.21.已知函数().(1)若在区间上的值域为,求实数的值;(2)在(1)的条件下,记的角所对的边长分别为,若,的面积为,求边长的最小值;(3)当,时,在答题纸上填写下表,用五点法作出的图像,并写出它的单调递增区间.0

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据幂函数的性质,结合题中条件,即可得出结果.【详解】若函数的定义域是,则;又函数为偶函数,所以只能使偶数;因为,所以能取的值为2.故选D【点睛】本题主要考查幂函数性质的应用,熟记幂函数的性质即可,属于常考题型.2、B【解析】

根据程序框图可知,当k=2019时结束计算,此时S=cos【详解】计算过程如下表所示:周期为6n2019k12…20182019S12-1…-k<n是是是是否故选B.【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.3、C【解析】由三视图可知,三棱锥的体积为4、B【解析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.5、B【解析】

写出与126°的角终边相同的角的集合,取k=1得答案.【详解】解:与126°的角终边相同的角的集合为{α|α=126°+k•360°,k∈Z}.取k=1,可得α=486°.∴与126°的角终边相同的角是486°.故选B.【点睛】本题考查终边相同角的计算,是基础题.6、C【解析】试题分析:根据直线斜率的计算式有,解得.考点:直线斜率的计算式.7、A【解析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.8、B【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9、B【解析】

先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.10、A【解析】

把已知等式变形,利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z(1﹣i)=2,得z=,∴.则z的共轭复数对应的点的坐标为(1,﹣1),位于第四象限.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用二倍角降幂公式和辅助角公式可得出,然后解不等式,即可得出函数的单调递减区间.【详解】,解不等式,得,因此,函数的单调递减区间为.故答案为:.【点睛】本题考查正弦型三角函数单调区间的求解,一般利用三角恒等变换思想将三角函数解析式化简,考查计算能力,属于中等题.12、3【解析】

利用参数方程假设C点坐标,表示出AC和BC,利用AC⋅BC=0可得到a【详解】设C∴∵∠ACB=90°∴∴当sinα+∴0<a≤3本题正确结果:3【点睛】本题考查圆中参数范围求解的问题,关键是能够利用圆的参数方程,利用向量数量积及三角函数关系求得最值.13、【解析】

根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.14、【解析】

由,故用二倍角公式算出,再用余弦定理算得即可.【详解】,又,,又,代入得,所以.故答案为【点睛】本题主要考查二倍角公式与余弦定理,属于基础题型.15、【解析】

推导出a1=1,a2=2×1=2,当n≥2时,an=Sn﹣Sn﹣1,即,由此利用累乘法能求出数列{an}的通项公式.【详解】∵数列{an}的前n项和为Sn,满足:a2=2a1,且Sn1(n≥2),∴a2=S2﹣S1=a2+1﹣a1,解得a1=1,a2=2×1=2,∴,解得a3=4,,解得a4=6,当n≥2时,an=Sn﹣Sn﹣1,即,∴n≥2时,22n﹣2,∴数列{an}的通项公式为.故答案为:.【点睛】本题考查数列的通项公式的求法,考查数列的通项公式与前n项和公式的关系,考查运算求解能力,分类讨论是本题的易错点,是基础题.16、【解析】.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)圆:.(2)证明见解析;,.【解析】

(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【点睛】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.18、方式一最大值【解析】

试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.试题解析:解(1)在中,设,则又当即时,(Ⅱ)令与的交点为,的交点为,则,于是,又当即时,取得最大值.,(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值为方式一:考点:把实际问题转化为三角函数求最值问题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.【详解】(Ⅰ)在中,由正弦定理得,又由,得,即.又因为,得到,.由余弦定理可得.(Ⅱ)由(Ⅰ)可得,从而,.故.【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力.20、(1);(2)或.【解析】

(1)根据直线在两坐标轴上的截距相等列出直线方程,然后代入点即可求出直线方程;(2)首先根据直线过点设出直线方程,然后列出三角形的面积公式,根据面积等于2求出直线的方程.【详解】(1)因为直线在两坐标轴上的截距相等,设直线:,将点代入方程,得,所以直线的方程为;(2)①若直线的斜率不存在,则直线的方程为,直线,直线和轴围成的三角形的面积为2,则直线的方程为符合题意,②若直线的斜率,则直线与轴没有交点,不符合题意,③若直线的斜率,设其方程为,令,得,由(1)得直线交轴,依题意有,即,解得,所以直线的方程为,即,综上,直线的方程为或.【点睛】本题考查了直线方程的求解与直线方程的综合应用,属于中档题.21、(1);(2);(3)填表见解析,作图见解析,().【解析】

(1)利用二倍角公式和辅助角公式可把化简为,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论