往届学习供参考远经典物理电动力学_第1页
往届学习供参考远经典物理电动力学_第2页
往届学习供参考远经典物理电动力学_第3页
往届学习供参考远经典物理电动力学_第4页
往届学习供参考远经典物理电动力学_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章电磁波的辐射电磁波的激发变化的电荷和电流分布激发变化电磁场变化电磁场对源的依赖关系¶tD

=

r¶B·

E

=

-¶tB

=

H

=

J

+

¶DD

=

e

E0B

=

m0

H真空§1

电磁场的矢势和标势1.一般电磁场的势B

=

0B

=

·

A矢势¶t·

E

=

-

¶B¶t

·

E

+

¶A

=

0¶tE

+

¶A

=

-

j标势¶tE

=-

j

-

¶A2.规范变换电磁势的不确定性j¢=

j

-

¶y¶tA¢=

A

+

y规范变换·

y

=

A¢=

·

A-=

-¶t¶

y

=

¶y¶t¶t¶tj¢-

¶A¢j

-

¶A3.电磁势的微分方程D

=

r¶t·

H

=

J

+

¶D¶t2j

+

A

=

-

r

e01

¶j

-

c2¶t¶t

21

¶2

A·(

·

A)=

m0

J

-

c2(=·

·

AA)-2

A201

¶j

-¶t

2¶t1

¶2

AA

-c2A

+c2=

-m

J2201

¶2j

1

¶j

rj

-c

¶t

2

+

¶t

¶t

=

-

eA

+c2Coulomb规范

A

=

020c2e¶t

2¶t1

¶2

A

1

¶A

-c2-

j

=

-m0

J2j

=-

rE

=

EL

+

ETL¶AE

=-

j

ET

=-¶tLorentz规范1

¶j=

0¶tA

+c2220c2¶t

22j

-1

j

=

-

r¶t

2

e1

¶2

AA

-c2=

-m0

Jd’Alembert方程有源波动方程例1

平面电磁波的电磁势解法J

=

0

r

=

0222=

0¶t

21

¶2jj

-=

0c

¶t

21

¶2

AA

-c2自由空间波动方程平面波解((00i

k

x

-w

ti

k

x

-w

tA(x,

t

=

A

ej

(x,

t

=

j

ew

=

ck1

¶jA

+

=

0c2

¶t¶fi

ikc2fi

-iw j0

=

k A0

=

cek

A0¶t

wB

=

·

A

=

ik

·

A¶t¶AE

=-

j

-c2w=

-ikj

+iw

A

j0

=

k

A02ic2

ic2

kE

=-

(k

A)k

-

k

A

=

-

k

·(k

·

A)=

-c

·

Bw

w

k洛伦兹规范下的剩余规范自由度A0¢=

A0

+a

k

j0¢=

j0

+awk A

=

0B

=

ik

·

Aj

=

0

E

=

iw

A2c2-¶t

2¶tj

=

02j

=

01

¶2

A

1

¶A

-c2库仑规范(0i

k

x

-w

tj

(x,

t=

0

A(x,

t

=

A

eA

=

0

k A

=

0B

=

ik

·

AE

=

iw

A§2

推迟势2201

¶2j

r¶t

2¶t

2

=

-

e1

¶2

AA

-c2=

-m0

J

j

-

c200e2j

=-

r2

A

=

-m

J变化电荷和电流分布J

r电磁势A

j静场14π

r4πe

rV

¢

0

V

¢Jr

dV

¢A(x

)=

m0

dV

¢

j

(x

)=积分遍及全部电荷和电流的分布区域Poisson方程d’Alembert方程¶tj

-

¶AB

=

·

A E

=

-1.变化点电荷的标势原点处的变化点电荷221

¶2j=

0c

¶t

2x

0

j

-2203Q

(teQ

t

x

=

01

¶2j

j

-dV

=

-c

¶t

2

V

=4

πR3

fi

0

x

=

0球对称性j

=

j

r,

tj

=

j

r,q,f,

+

¶q

+

¶f

=

¶r¶xi

¶xi2222221sinq1

¶2¶r

¶xi

¶q

¶xi

¶f¶21

=r

++r

¶rr

sinq

¶q¶qr

sin

q

¶f1

¶21

¶2j=

0r

¶r

2

(rj

)-

c2

¶t

2x

0u

r,

t=

rj

r,

tc2¶2u

1

¶2u-=

0¶r

2

¶t

2一维波动方程通解u

=

f

t

-

r

+

g

t

+

r

c

c

rf t

-

r

c

g t

+

r

cj

=

+向外发散的球面波r向内汇聚的球面波rt

-

r

cj

(r,

t

)=

f221

¶2jj

-=

0c

¶t

2任意函数形式

f

均满足

x

02203Q

(te1

¶2j

j

-dV

=

-c

¶t

2V

=4

πR3

fi

0

x

=

0决定f202

11Q

(te1

¶2

f

f

+r

f

r

+

2dV

=

-f

-c2

r

¶t

2

Rfi

0

R21r

Rrrf

(t

-

r

c)

2

1

dV

=

f

(t

)Rfi

0Rfi

0Rfi

02

1

dV

=

f

(t

)

1

dSr2Rrr3RRfi

0Rfi0Rfi0dS

=

-4πr1

dS

=

-dS

=

-lim

14πe0f

(t

)=

Q

t4πe0f

(t

-

r

c)=

Q t

-

r

c4πe0rj

(r,

t

)=

Q t

-

r

cQ

x¢,

t4πe0

rj

(x,

t

)=

Q

x¢,

t

-

r

cx

点处的变化点电荷r

=

x

-

x¢2.变化电荷和电流分布的电磁势14πe

0

V

¢r

x¢,

t

-

r

c

dVj

(x,

t

)=dQ

x¢,

t

-

r

c

=

r

x¢,

t

-

r

c

dV线性方程的叠加性20c21

¶2j

rj

-=

-¶t

2

e0c2¶t

21

¶2

A2

A

-=

-m

J4π

rV

¢rJ

x¢,

t

-

r

c

dVA(x,

t

)=

m0

推迟势r

=

x

-

x¢电磁场以光速传播,源对场点的物理作用有时间上的推迟恒定电荷电流分布情形,推迟势回复到静电标势和静磁矢势3.推迟势满足洛伦兹规范的证明c2¶tA

+

1

¶j

=

01rrdV

¢4πe

0

V

¢m

V

¢r

x¢,

t

-

r

c

dVj

(x,

t

)=J

(x¢,

t

-

r

c)A(x,

t

)=

0

r4π

V

¢J

x¢,

t

-

r

c

dVA(x,

t

)=

m0

1rJ

x¢,

1=

J

(x¢,

t¢)+

J

(x¢,

t¢)

r

rt¢=

t

-

r

c(

)(t¶t¢

¶J

x¢,

t¢J

x¢,

=f

r

=-

¢f

rr

=

x

-

x¢1r¢¢¢

¢

¢=-

¢r

¶t

x¢J

(x¢,

t¢r1

¶J

(x¢,

t

-

J

(x

,

t

)1rr¢¢

¢ ¢

=-

1rJ

x¢,

t¢J

(x

,

t

J

(x¢,

t¢)¢t

t¢¶t¢

¶J

(x¢,

J

(x¢,

t¢)=

¢

J

(x¢,

t¢)rt¢J

x¢,

J=-

¢x¢,

1r

+

r

¢

J

(x¢,

t¢)r¢V

¢S

¢J

x¢,

t¢J

x¢,

t¢rdS¢=

0dV

¢=区域边界J

x¢,

=

0t¢1

V

¢rA(x,

t

)=

m0

¢

J

(x¢,

t¢)

dV

¢1r¶t4πe

¶t0

V

¢¶

r

x¢,

t

-

r

c

dV¶

j

(x,

t

)=¶

f

(t¢)=

f

(t¢)¶t

¶t¢t¢=

t

-

r

cdVr

¶t¶t¢4πe

0

V

¢

x¢1

¶r

(x¢,

j

(x,

t

)=

1

(

)t¢

¶t¢

¶r

(x¢,

¢

Jx¢,

=

-电流连续性方程c2¶tA

+

1

¶j

=

0§3

谐振荡电流的电磁场微观变速带电粒子宏观

变化电流分布辐射电磁波1.单频谐振电流的电磁场r4π

V

¢J

x¢,

t

-

r

c

dVA(x,

t

)=

m0

(0-iw

tJ

(x¢,

t

=

Jx¢ek

=

w

c(

)

0

0

0

dVrm4π

V

¢J

(x¢

eikrA

x

=(0-iw

tA(x,

t=

A

x

e(0-iw

tr

(x¢,

t

=

rx¢e¶r¶tJ

=-00iwr

=

JB

=

·

A1r4πe

0

V

¢r

x¢,

t

-

r

c

dVj

(x,

t

)=(0-iw

tj

(x,

t

=

jx

e01

0

dVr4πe

0

V

¢r

(x¢

eikrj

(x

)=¶tE

=-

j

-

¶A(0-iw

tB

(x,

t

=

Bx

e00B

=

·

A(0-iw

tE

(x,

t

=

Ex

e0E

=-

j0

+iw

A0c2¶t·

B

=

1

¶EkE

=

i

c

·

B单频谐振源激发同频谐振电磁场¶t¶E

=

-iw

E2.推迟势的多极展开(0-iw

tJ

(x¢,

t

=

Jx¢e(0-iw

tA(x,

t=

A

x

e(

)

0

0

0

dVrV

¢m

J

(x¢

eikrA

x

=R

=

xr

=

x

-

x¢Vx

OxrRR+R

x¢1

+

=

1

1+

eR1

=

1

-

x¢r

Rr

=

R

-

x¢R

+

=

R

-

eR

x¢+eikrR=

eikR

(1-

ikex¢+Rxm¢ax

1lxm¢ax

1kl

=

2π近区

xm¢ax

R

l(

)00m4π

rV

¢J0x¢

dVA

x

»0r04πe

r0

V

¢x¢

dVj

(x

1

推迟效应可忽略准静(似稳)场源与场关系类似于静场的库仑形式eikr=

eikR

(1-

ikeRx¢+

»

eikR

»1r

R

RR+R

x¢1

=

1

-

1

+

=

1

1+

eR(

)04πR

R

RV

¢1+m

e-iwt

ex¢A(x,

t

)=

0

Jx¢+

dVRe-iwt4πe0

R

V

¢ex¢j

(x,

t

)=r0

(x¢)1+

R

+dV感应区xm¢ax

R

lR+R

x¢1

=

1

-

x¢r

R

R1

+

=

1

1+

eReikr=

eikR

(1-

ikeRx¢+展开式对应各级同等重要过渡区域远区xm¢ax

l

R1

r

»1

R(

)(0R4πRi(kR

-w

tm0eV

¢A(x,

t

)=Jx¢1-

ikex¢+)dV(

)04πe

Rei(kR-w

tV

¢j

x,

t

=r0

(x¢)(1-

ikeRx¢+)dV(

)ikr4πRV

¢A(x,

t

m0J

x¢,

t

e dV

¢(

)j

1

4πe0

RV

¢x,

t

»r

(x¢,

t

)eikr

dV辐射场各向异性球面波§4

电偶极辐射(

)(

)(

)10

0

4πR

0

4πRmm

ei(kR

-w

tV

¢V

¢dV

¢=A x,

t

=Jx¢J

x¢,

dV1.辐射场t¢=

t

-

R

cn

n

n

nn

ndtV

¢J

(x¢,

t¢)dV

¢=

Q

v¢(t¢)=

d

Q

x¢(t¢)=

p

(t¢)V

¢p

(t¢

=

x¢r

(x¢,

dV((0i

kR-w

tt¢p=

p

e00V¢p

=

x¢r

(x¢

dV(

)

0 0

1i4π

Rm

w

p

ei(kR

-w

tA x,

t

=

-振荡电偶极矩产生的辐射04πeikRRm

w

e-iwtB

=

·

A

=

-i

0

·

p1eikReikReikRikRRR

RRReikR

1

=+e=R

Rik

-

Re

»

ikefi

ikeR04πe

c3

Rw

2e·

p

ei(kR-w

tB=

R

0

ckE

=

B

=

-ceR

·

B00R

RR4πe

c2ei(kR

-w

tw

2e

·(e

·

pE

=-2.辐射能流与功率00Rfw

2

p4πe

c3cos

kR

-wtB

=-

sinqe00Rqw

2

p4πe

c2cos

kR

-wtE

=-

sinqe1p辐射场是横场

RzkBEq001RR2w

4

p2m16π2e

c3cos2

(kR

-wtS

=

E

·

B

=

0

sin2qe0Rw

4

p2sin2q32π2e

c3

R2S

=

0

eP

=

S

4

πR2S

dσ=π00000w

4

p2w

4

p232π

e

c

R12πe

c32πR2sin3qdq

=P

=2

3 2

平均能流辐射功率S

1

R2辐射功率与传播距离无关,电磁能可传播至无限远处。§5

磁偶极和电四极辐射1.辐射场t¢=

t

-

R

c(020

RR4πR4πRkm

ei

kR

-w

tV

¢V

¢A

(x,

t

)=

-iJ

(x¢)(e

x¢)dV=

-i

km0

ex¢J

(x¢,

t¢)dV

¢x¢J

=

1

(x¢J

+

Jx¢)+

1

(x¢J

-

Jx¢)2eR

x¢J

-

Jx¢

=

eR2x¢

J

-

eR

Jx¢=

-eR

·

x¢·

J(

)12V

¢t¢=mx¢·

J

(x¢,

t¢)dV((0i

kR

-w

tt¢m=

m

e002V

¢=

1mx¢·

J

(x¢)dVV

¢2

1

x¢J

(x¢,

t¢)+

J

(x¢,

t¢)x¢

dV

¢=

1

(t¢)D6V

¢D

(t¢

=

3x¢x¢r

(x¢,

t¢dV

D

(t¢

=

D0ei(kR-w

t0V

¢D0

=

3x¢x¢r

(x¢

dV2MR4πc

Rei(kR-w

t

)=

i

0

R

0

4πR

V

¢2

A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论