版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,直线,若直线过线段的中点,则()A.-5 B.5 C.-4 D.42.若各项为正数的等差数列的前n项和为,且,则()A.9 B.14 C.7 D.183.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为()A. B. C. D.4.某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.5.已知数列的前项和为,且,若,,则的值为()A.15 B.16 C.17 D.186.已知圆C的半径为2,在圆内随机取一点P,并以P为中点作弦AB,则弦长的概率为A. B. C. D.7.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:A.281盏 B.9盏 C.6盏 D.3盏8.在中,角的对边分别是,若,则()A. B.或 C.或 D.9.一组数据0,1,2,3,4的方差是A. B. C.2 D.410.下列各命题中,假命题的是()A.“度”与“弧度”是度量角的两种不同的度量单位B.一度的角是周角的,一弧度的角是周角的C.根据弧度的定义,一定等于弧度D.不论是用角度制还是用弧度制度量角,它们都与圆的半径长短有关二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,,______.12.若数列满足,且,则___________.13.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.14.在中,角的对边分别为,若,则角________.15.在,若,,,则__________________.16.已知点是所在平面内的一点,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大小.18.已知方程有两个实根,记,求的值.19.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.20.设为数列的前项和,.(1)求证:数列是等比数列;(2)求证:.21.设数列满足.(1)求的通项公式;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题意先求出线段的中点,然后代入直线方程求出的值.【详解】因为,,所以线段的中点为,因为直线过线段的中点,所以,解得.故选【点睛】本题考查了直线过某一点求解参量的问题,较为简单.2、B【解析】
根据等差中项定义及条件式,先求得.再由等差数列的求和公式,即可求得的值.【详解】数列为各项是正数的等差数列则由等差中项可知所以原式可化为,所以由等差数列求和公式可得故选:B【点睛】本题考查了等差中项的性质,等差数列前n项和的性质及应用,属于基础题.3、C【解析】
过球心作垂直圆面于.连接与圆面上一点构造出直角三角形再计算球的半径即可.【详解】如图,过球心作垂直圆面于,连接与圆面上一点.则.故球的体积为.故选:C【点睛】本题主要考查了球中构造直角三角形求解半径的方法等.属于基础题.4、D【解析】
先还原几何体,再根据形状求表面积.【详解】由三视图知,该几何体的直观图如图所示,其表面积为,故选.【点睛】本题考查三视图以及几何体表面积,考查空间想象能力以及基本求解能力,属中档题.5、B【解析】
推导出数列是等差数列,由解得,由此利用能求出的值.【详解】数列的前项和为,且数列是等差数列解得解得故选:【点睛】本题考查等差数列的判定和基本量的求解,属于基础题.6、B【解析】
先求出临界状态时点P的位置,若,则点P与点C的距离必须大于或等于临界状态时与点C的距离,再根据几何概型的概率计算公式求解.【详解】如图所示:当时,此时,若,则点P必须位于以点C为圆心,半径为1和半径为2的圆环内,所以弦长的概率为:.故选B.【点睛】本题主要考查几何概型与圆的垂径定理,此类题型首先要求出临界状态时的情况,再判断满足条件的区域.7、D【解析】
设塔的顶层共有盏灯,得到数列的公比为2的等比数列,利用等比数列的前n项公式,即可求解.【详解】设塔的顶层共有盏灯,则数列的公比为2的等比数列,所以,解得,即塔的顶层共有3盏灯,故选D.【点睛】本题主要考查了等比数列的通项公式与求和公式的应用,着重考查了推理与计算能力,属于基础题.8、D【解析】
直接利用正弦定理,即可得到本题答案,记得要检验,大边对大角.【详解】因为,所以,又,所以,.故选:D【点睛】本题主要考查利用正弦定理求角.9、C【解析】
先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。10、D【解析】
根据弧度制的概念,逐项判断,即可得出结果.【详解】A选项,“度”与“弧度”是度量角的两种不同的度量单位,正确;B选项,一度的角是周角的,一弧度的角是周角的,正确;C选项,根据弧度的定义,一定等于弧度,正确;D选项,用角度制度量角,与圆的半径长短无关,故D错.故选:D.【点睛】本题主要考查弧度制的相关判定,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.12、【解析】
对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.13、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.14、【解析】
根据得,利用余弦定理即可得解.【详解】由题:,,,由余弦定理可得:,.故答案为:【点睛】此题考查根据余弦定理求解三角形的内角,关键在于熟练掌握余弦定理公式,准确计算求解.15、【解析】
由,故用二倍角公式算出,再用余弦定理算得即可.【详解】,又,,又,代入得,所以.故答案为【点睛】本题主要考查二倍角公式与余弦定理,属于基础题型.16、【解析】
设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)通过正弦定理易得,代入即可.(Ⅱ)三边长知道通过余弦定理即可求得的大小.【详解】(Ⅰ)因为,所以由正弦定理可得.因为,所以.(Ⅱ)由余弦定理.因为三角形内角,所以.【点睛】此题考查正弦定理和余弦定理,记住公式很容易求解,属于简单题目.18、【解析】
求出的值和的范围即可【详解】因为,所以又有两个实根所以所以因为所以,所以所以所以故答案为:【点睛】1.要清楚反三角函数的定义域和值域,如的定义域为,值域为2.由三角函数的值求角时一定要判断出角的范围.19、(1)见解析(2)【解析】
(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.20、(1)见解析;(2)见解析.【解析】
(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和的前项和,从而可证明出所证不等式成立.【详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【点睛】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.21、(1);(1).【解析】
(1)在中,将代得:,由两式作商得:,问题得解.(1)利用(1)中结果求得,分组求和,再利用等差数列前项和公式及乘公比错位相减法分别求和即可得解.【详解】(1)由n=1得,因为,当n≥1时,,由两式作商得:(n>1且n∈N*),又因为符合上式,所以(n∈N*).(1)设,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 飞机的教案8篇
- 有关市场营销社会实践调查报告(3篇)
- 工程师个人总结工作总结范文6篇
- 校内奖学金获奖感言500字(30篇)
- DB12-1100-2021 平板玻璃工业大气污染物排放标准
- 山东省临沂市(2024年-2025年小学五年级语文)统编版专题练习(上学期)试卷及答案
- 2024年家用电力器具专用配件项目资金需求报告代可行性研究报告
- 水弹性城市道路绿化施工技术规范编制说明
- 上海市县(2024年-2025年小学五年级语文)统编版摸底考试((上下)学期)试卷及答案
- 荆楚理工学院《习近平新时代中国特色社会主义思想概论》2022-2023学年第一学期期末试卷
- 秋冬季安全检查表
- 保利发展控股集团-2022-2023年房地产行业白皮书
- 土力学(二)-课件清华大学-张丙印
- 优化少先队仪式教育的尝试 论文
- 【知识解析】化学促进科学技术的发展
- 小区日常清洁服务项目投标书
- 三国演义第三回读后感100字 三国演义第三回读后感1000字以上(三篇)
- 第三章人本心理治疗
- 双阳区巡游出租汽车驾驶员从业资格考试区域科目考试题库
- 口腔修复学名解及案例分析题
- 带电粒子在电磁场中的运动
评论
0/150
提交评论