版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量、的夹角为,,,则()A. B. C. D.2.已知向量,则与的夹角为()A. B. C. D.3.已知向量,且,则的值为()A. B. C. D.4.在某项体育比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.92,2 B.92,2.8 C.93,2 D.93,2.85.若变量满足约束条件则的最大值为()A.4 B.3 C.2 D.16.某校高二理(1)班学习兴趣小组为了调查学生喜欢数学课的人数比例,设计了如下调查方法:(1)在本校中随机抽取100名学生,并编号1,2,3,…,100;(2)在箱内放置了两个黄球和三个红球,让抽取到的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生站出来,一是摸到黄球且编号数为奇数的学生,二是摸到红球且不喜欢数学课的学生。若共有32名学生站出来,那么请用统计的知识估计该校学生中喜欢数学课的人数比例大约是()A.80% B.85% C.90% D.92%7.已知一直线经过两点,,且倾斜角为,则的值为()A.-6 B.-4 C.2 D.68.若角α的终边过点P(-3,-4),则cos(π-2α)的值为()A. B. C. D.9.已知M为z轴上一点,且点M到点与点的距离相等,则点M的坐标为()A. B. C. D.10.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.625二、填空题:本大题共6小题,每小题5分,共30分。11.若Sn为等比数列an的前n项的和,8a12.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____13.已知向量,满足,与的夹角为,则在上的投影是;14.已知,,与的夹角为钝角,则的取值范围是_____;15.如果是奇函数,则=.16.已知实数满足条件,则的最大值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知三棱锥中,是边长为的正三角形,;(1)证明:平面平面;(2)设为棱的中点,求二面角的余弦值.18.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.19.在公差不为零的等差数列中,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,设数列的前项和,求证.20.已知圆,圆与圆关于直线对称.(1)求圆的方程;(2)过直线上的点分别作斜率为的两条直线,使得被圆截得的弦长与被圆截得的弦长相等.(i)求的坐标;(ⅱ)过任作两条互相垂直的直线分别与两圆相交,判断所得弦长是否恒相等,并说明理由.21.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用平面向量数量积和定义计算出,可得出结果.【详解】向量、的夹角为,,,则.故选:B.【点睛】本题考查利用平面向量的数量积来计算平面向量的模,在计算时,一般将模进行平方,利用平面向量数量积的定义和运算律进行计算,考查计算能力,属于中等题.2、D【解析】
先求出的模长,然后由可求出答案.【详解】由题意,,,所以与的夹角为.故选D.【点睛】本题考查了两个向量的夹角的求法,考查了向量的模长的计算,属于基础题.3、B【解析】
由向量平行可构造方程求得结果.【详解】,解得:故选:【点睛】本题考查根据向量平行求解参数值的问题,关键是明确两向量平行可得.4、B【解析】
由平均数与方差的计算公式,计算90,90,93,94,93五个数的平均数和方差即可.【详解】90,89,90,95,93,94,93,去掉一个最高分和一个最低分后是90,90,93,94,93,所以其平均数为,因此方差为.故选B【点睛】本题主要考查平均数与方差的计算,熟记公式即可,属于基础题型.5、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】作出约束条件,所对应的可行域(如图阴影部分)变形目标函数可得,平移直线可知,当直线经过点时,直线的截距最小,代值计算可得取最大值故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6、A【解析】
先分别计算号数为奇数的概率、摸到黄球的概率、摸到红球的概率,从而可得摸到黄球且号数为奇数的学生,进而可得摸到红球且不喜欢数学课的学生人数,由此可得估计该校学生中喜欢数学课的人数比例.【详解】解:由题意,号数为奇数的概率为0.5,摸到黄球的概率为,摸到红球的概率为那么按概率计算摸到黄球且号数为奇数的学生有个共有32名学生站出来,则有12个摸到红球且不喜欢数学课的学生,不喜欢数学课的学生有:,喜欢数学课的有80个,估计该校学生中喜欢数学课的人数比例大约是:.故选:.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.7、C【解析】
根据倾斜角为得到斜率,再根据两点斜率公式计算得到答案.【详解】一直线经过两点,,则直线的斜率为.直线的倾斜角为∴,即.故答案选C.【点睛】本题考查了直线的斜率,意在考查学生的计算能力.8、C【解析】
由三角函数的定义得,再利用诱导公式以及二倍角余弦公式求解.【详解】由三角函数的定义,可得,则,故选C.【点睛】本题主要考查了三角函数的定义,以及二倍角的余弦公式的应用,着重考查了推理与运算能力,属于基础题.9、C【解析】
根据题意先设,再根据空间两点间的距离公式,得到,再由点M到点与点的距离相等建立方程求解.【详解】设根据空间两点间的距离公式得因为点M到点与点的距离相等所以解得所以故选:C【点睛】本题主要考查了空间两点间的距离公式,还考查了运算求解的能力,属于基础题.10、C【解析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、-7【解析】设公比为q,则8a1q=-a112、【解析】
通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.13、1【解析】考查向量的投影定义,在上的投影等于的模乘以两向量夹角的余弦值14、【解析】
与的夹角为钝角,即数量积小于0.【详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【点睛】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.15、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题16、8【解析】
画出满足约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】实数,满足条件的可行域如下图所示:将目标函数变形为:,则要求的最大值,即使直线的截距最大,由图可知,直线过点时截距最大,,故答案为:8.【点睛】本题考查线性规划的简单应用,解题关键是明确目标函数的几何意义.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)由题意结合正弦定理可得,据此可证得平面,从而可得题中的结论;(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,由空间向量的结论求得半平面的法向量,然后求解二面角的余弦值即可.【详解】(1)证明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,过点作,以所在的直线分别为轴建立空间直角坐标系,则设平面的一个法向量为则解得,,即设平面的一个法向量为则解得,,即由图可知二面角为锐角,所以二面角的余弦值为.【点睛】本题主要考查面面垂直的证明方法,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.18、(1)(2)符合【解析】
:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个.其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个.设“从5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30吨”的事件为,则所求的概率为.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:.故此方案符合国家“保基本”政策.【点睛】本题考查了古典概型在实际生活中的应用,要紧扣题意从题目中抽象出数学计算的模型.19、(Ⅰ)(Ⅱ)见解析【解析】
(Ⅰ)根据题意列出方程组,利用等差数列的通项公式化简求解即可;(Ⅱ)将的通项公式代入所给等式化简求出的通项公式,利用裂项相消法求出,由推出,由数列是递增数列推出.【详解】(Ⅰ)设等差数列的公差为(),因为,所以解得,所以.(Ⅱ),.因为,所以,又因为,所以数列是递增数列,于是.综上,.【点睛】本题考查等差数列的基本量的求解,裂项相消法求和,数列性质的应用,属于中档题.20、(1);(2)(i),(ii)见解析【解析】
(1)根据题意,将问题转化为关于直线的对称点即可得到,半径不变,从而得到方程;(2)(i)设,由于弦长和距离都相等,故P到两直线的距离也相等,利用点到线距离公式即可得到答案;(ⅱ)分别讨论斜率不存在和为0三种情况分别计算对应弦长,故可判断.【详解】(1)设,因为圆与圆关于直线对称,,则直线与直线垂直,中点在直线上,得解得所以圆.(2)(i)设的方程为,即;的方程为,即.因为被圆截得的弦长与被圆截得的弦长相等,且两圆半径相等,所以到的距离与到的距离相等,即,所以或.由题意,到直线的距离,所以不满足题意,舍去,故,点坐标为.(ii)过点任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.证明如下:当的斜率等于0时,的斜率不存在,被圆截得的弦长与被圆截得的弦长都等于圆的半径;当的斜率不存在,的斜率等于0时,与圆不相交,与圆不相交.当、的斜率存在且都不等于0,两条直线分别与两圆相交时,设、的方程分别为,即.因为到的距离,到的距离,所以到的距离与到的距离相等.所以圆与圆的半径相等,所以被圆截得的弦长与被圆截得的弦长恒相等.综上所述,过点任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.【点睛】本题主要考查点的对称问题,直线与圆的位置关系,计算量较大,意在考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 飞机的教案8篇
- 有关市场营销社会实践调查报告(3篇)
- 工程师个人总结工作总结范文6篇
- 校内奖学金获奖感言500字(30篇)
- DB12-1100-2021 平板玻璃工业大气污染物排放标准
- 山东省临沂市(2024年-2025年小学五年级语文)统编版专题练习(上学期)试卷及答案
- 2024年家用电力器具专用配件项目资金需求报告代可行性研究报告
- 水弹性城市道路绿化施工技术规范编制说明
- 上海市县(2024年-2025年小学五年级语文)统编版摸底考试((上下)学期)试卷及答案
- 荆楚理工学院《习近平新时代中国特色社会主义思想概论》2022-2023学年第一学期期末试卷
- 印刷排版岗位招聘笔试题与参考答案(某大型央企)2025年
- 陕煤集团笔试题库及答案
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- (高清版)TDT 1075-2023 光伏发电站工程项目用地控制指标
- 《中华民族共同体概论》考试复习题库(含答案)
- 2022-2023学年武汉市江岸区七年级英语上学期期中质量检测卷附答案
- 我的家乡石家庄PPT学习课件
- 瑞士麦尔兹并流蓄热式石灰窑及其技术改进
- 加油机故障描述讲解
- 邓稼先的故事[共1页]
评论
0/150
提交评论