2022-2023学年四川省成都市成华区实验中学高一数学理月考试卷含解析_第1页
2022-2023学年四川省成都市成华区实验中学高一数学理月考试卷含解析_第2页
2022-2023学年四川省成都市成华区实验中学高一数学理月考试卷含解析_第3页
2022-2023学年四川省成都市成华区实验中学高一数学理月考试卷含解析_第4页
2022-2023学年四川省成都市成华区实验中学高一数学理月考试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年四川省成都市成华区实验中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数的定义域为,值域为,则的取值范围是(

)A.(0,2]

B.

C.

D.

参考答案:D略2.设函数,若f(a)=a,则实数a的值为A.±1

B.-1

C.-2或-1

D.±1或-2参考答案:B3.若,,则(

)A.

B.

C.

D.参考答案:A略4.函数在区间上的最大值与最小值的和为3,则等于

A.

B.2

C.4

D.参考答案:B5.在△ABC中,BC=2,B=,当△ABC的面积等于时,AB=

(

)A.

B.

C.1

D.参考答案:C6.设函数f(x)在(-∞,+∞)上为减函数,则()A.f(a)>f(2a)

B.f(a2)<f(a)

C.f(a2+a)<f(a)

D.f(a2+1)<f(a)参考答案:D7.从匀速传递的新产品生产流水线上,质检员每10分钟从中抽取一件新产品进行某项指标检测,这样的抽样是()A.系统抽样 B.分层抽样 C.简单随机抽样 D.随机数法参考答案:A【考点】系统抽样方法.【分析】根据抽样的定义和性质进行判断即可.【解答】解:新产品没有明显差异,抽取时间间隔相同,故属于系统抽样,故选:A.8.已知数列{an}中,恒为定值,若时,,则(

)A.1

B.9

C.28

D.2018参考答案:C由题意知恒为定值,且时,,所以当时,,所以,于是,数列是周期为10的周期数列,所以,故选C.

9.函数在(-∞,+∞)上是减函数,则(

)A.

B.C.

D.参考答案:A10.设是的相反向量,则下列说法错误的是(

)A.与一定不相等

B.∥C.与的长度必相等

D.是的相反向量参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知,,,则_____,________.参考答案:

【分析】根据三角函数的基本关系式,可求得,再根据两角和的余弦函数,即可求解的值,得到答案.【详解】因为,且,所以,由,则,又因为,则,所以.【点睛】本题主要考查了三角函数的化简求值,其中解答中熟记两角和的余弦公式,以及合理应用三角函数的基本关系式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.点(2,3,4)关于x轴的对称点的坐标为_____参考答案:13.已知函数的定义域是,对任意都有:,且当时,.给出结论:①是偶函数;②在上是减函数.则正确结论的序号是

.参考答案:①

略14.观察下列数表:13,57,9,11,1315,17,19,21,23,25,27,29…设999是该表第m行的第n个数,则m+n=

.参考答案:254【考点】F1:归纳推理.【分析】根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数,第一行1个数,第二行2个数,第三行4个数,第四行8个数,…第9行有28个数,分别求出左起第1个数的规律,按照此规律,问题解决.【解答】解:根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数,第一行1个数,第二行2=21个数,且第1个数是3=22﹣1第三行4=22个数,且第1个数是7=23﹣1第四行8=23个数,且第1个数是15=24﹣1

…第9行有28个数,且第1个数是29﹣1=511,所以999是第9行的第245个数,所以m=9,n=245,所以m+n=254;故答案为:254.15.设A是整数集的一个非空子集,对于,如果且,那么是A的一个“孤立元”,给定,由S的3个元素构成的所有集合中,不含“孤立元”的集合共有

个.参考答案:616.的值为_________.

参考答案:略17.给出下列六个命题:①函数f(x)=lnx-2+x在区间(1,e)上存在零点;②若,则函数y=f(x)在x=x0处取得极值;③若m≥-1,则函数的值域为R;④“a=1”是“函数在定义域上是奇函数”的充分不必要条件。⑤函数y=(1+x)的图像与函数y=f(l-x)的图像关于y轴对称;⑥满足条件AC=,AB=1的三角形△ABC有两个.其中正确命题的个数是

。参考答案:①③④⑤三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)某商品在近30天内每件的销售价格p(元)与时间t(天)的函数关系是该商品的日销售量Q(件)与时间t(天)的函数关系是,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?参考答案:设日销售金额为y(元),则y=pQ.

-------4分

--------6分当,t=10时,(元);

-------8分当,t=25时(元).

-------10分由1125>900,知ymax=1125(元),且第25天,日销售额最大

---------12分19.(12分)某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气后4分钟测得车库内的一氧化碳浓度为64ppm(ppm为浓度单位,一个ppm表示百万分之一),再过4分钟又测得浓度为32ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)存在函数关系y=c()mt(c,m为常数).1)求c,m的值2)若空气中一氧化碳浓度不高于0.5ppm为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?参考答案:考点: 指数函数综合题.专题: 函数的性质及应用.分析: (1)利用待定系数法,解得即可.(2)由题意,构造不等式,解得即可.解答: (1)∵函数y=c()mt(c,m为常数)经过点(4,64),(8,32),∴解得m=,c=128,(2)由(1)得y=128,∴128<,解得t=32.故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态.点评: 本题主要考查了指数函数的性质,属于基础题.20.已知定义在R的函数f(x)满足以下条件:①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);②当x>0时,f(x)>0;③f(1)=1.(1)求f(2),f(0)的值;(2)若f(2x)﹣a≥af(x)﹣5对任意x恒成立,求a的取值范围;(3)求不等式的解集.参考答案:【考点】抽象函数及其应用.【分析】(1)令x=y=1可得f(2)=3;令x=y=0可得f(0)=0或f(0)=﹣1,令x=1,y=0可得f(1)=f(1)f(0)+f(0)+f(1),若f(0)=﹣1,则f(1)=f(0)=﹣1与已知矛盾;(2)f(2x)﹣a≥af(x)﹣5对任意x恒成立?f2(x)+2f(x)﹣a≥af(x)﹣5对任意x恒成立,先探讨f(x)=t的取值范围t∈(﹣1,+∞),原不等式等价于:t2+2t﹣a≥at﹣5在t∈(﹣1,+∞)恒成立,(3)(3)f(f(x))≥?[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)??[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)+f(x+1)?f(f(x))+f(f(x))≥7?f(x+1+f(x))≥7.再证明函数y=f(x)在R上单调递增,原不等式转化为x+1+f(x)≥3令F(x)=x+1+f(x),F(x)在R上单调递增F(x)≥F(3)?x≥1,【解答】解:(1)令x=y=1可得f(2)=f(1)f(1)+2f(1)=3,令x=y=0可得f(0)=f(0)f(0)+2f(0),则f(0)=0或f(0)=﹣1,令x=1,y=0可得f(1)=f(1)f(0)+f(0)+f(1),若f(0)=﹣1,则f(1)=f(0)=﹣1与已知矛盾,∴f(0)=0;(2)f(2x)﹣a≥af(x)﹣5对任意x恒成立?f2(x)+2f(x)﹣a≥af(x)﹣5对任意x恒成立,令f(x)=t,以下探讨f(x)=t的取值范围.令y=﹣x可得f(0)=f(﹣x)f(x)+f(x)+f(﹣x)?f(x)=,当x<0时,f﹣x)>0,则﹣1<f(x)=<0,∴x∈R时,f(x)=t∈(﹣1,+∞).原不等式等价于:t2+2t﹣a≥at﹣5在t∈(﹣1,+∞)恒成立,即tt2+2t+5≥(t+1)a?a≤.g(t)=,当t=1时取等号.∴a≤4.(3)由(2)可得f(x)∈(﹣1+∞),f(x+1)∈(﹣1+∞),f(f(x))≥?[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)??[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)+f(x+1)?f(f(x))+f(f(x))≥7?f(x+1+f(x))≥7.下面证明y=f(x)的单调性:任取x1,x2∈R,且x1>x2,?f(x1﹣x2)>0,f(x2)>﹣1则f(x1)﹣f(x2)=f(x1﹣x2+x2)﹣f(x2)=f(x1﹣x2)f(x2)+f(x1﹣x2)=f(x1﹣x2)[f(x2)+1]>0所以函数y=f(x)在R上单调递增,∵f(3)═f(1)f(2)+f(2)+f(1)=7,∴f(x+1+f(x))≥7?.f(x+1+f(x))≥f(3)?x+1+f(x)≥3令F(x)=x+1+f(x),F(x)在R上单调递增,且F(1)=3x+1+f(x)≥3?F(x)≥F(3)?x≥1,所以原不等式解集为:[1,+∞).21.(本小题满分12分)给出如下程序.(其中x满足:0<x<12)程序:(1)请写出该程序表示的函数关系式.(2)若该程序输出的结果为6,则输入的x值.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论