概率论与统计学原理chapt2english_第1页
概率论与统计学原理chapt2english_第2页
概率论与统计学原理chapt2english_第3页
概率论与统计学原理chapt2english_第4页
概率论与统计学原理chapt2english_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CH2MethodsforDescribingSetsofData概率论与统计学原理chapt2english1. DescribeDataGraphically通过图表2. DescribeDataNumerically用数表示地LearningObjects概率论与统计学原理chapt2englishExampleAPHASIASubjectTypeofAphasia12345678910111213141516171819202122Broca’sAnomicAnomicConductionBroca’sConductionConductionAnomicConductionAnomicConductionBroca’sAnomicBroca’sAnomicAnomicAnomicConductionBroca’sAnomicConductionAnomicTheresearcherswanttodeterminewhetheronetypeofaphasiaoccursmoreoftenthananyother,and,ifso,howoften.概率论与统计学原理chapt2englishDescribingQualitativedataQualitativedataarenonnumericalinnature,thusthevalueofaqualitativevariablecanonlybeclassifiedintocategoriescalledclasses.Wecansummarisesuchdatanumericallyintwoways:(1)bycountingtheclass组frequency频数–thenumberofobservationsinthedatasetthatfallintoeachclass,or(2)bycalculatingtheclassrelativefrequency相对频数–theproportionofthetotalnumberofobservationsfallingintoeachclass.概率论与统计学原理chapt2englishDescribingQualitativedataDEF2.1Aclassisoneofthecategories分类intowhichqualitativedatacanbeclassified.DEF2.2Theclassfrequencyisthenumberofobservationsinthedatasetfallingintoaparticularclass.DEF2.3Theclassrelativefrequencyistheclassfrequencydividedbythetotalnumber(denoteasn,thesizeofthedataset)ofobservationsinthedataset,i.e., classrelativefrequency=classfrequency/n.概率论与统计学原理chapt2englishExampleAPHASIAClassTypeofAphasiaFrequencyNumberofSubjectsRelativeFrequencyProportionBroca’sConductionAnomic5710.227.318.455Totals221.000概率论与统计学原理chapt2englishBarGraphandPieChartThemostwidelyusedgraphicalmethodsforsummarizingqualitativedataarebargraphsandpiechart.BargraphshowstheamountofdatathatbelongstoeachclassasproportionallysizedrectangularareasPiechartshowstheamountofdatathatbelongstoeachclassasaproportionalpartofacircle概率论与统计学原理chapt2englishBarGraphBarLengthShowsFrequencyor%EqualBarWidthsTypeFrequency概率论与统计学原理chapt2englishBarGraph概率论与统计学原理chapt2englishPieChart饼图1. ShowsBreakdownofTotalQuantity

intoCategories2. UsefulforShowingRelativeDifferences3. AngleSize(360°)(Percent)概率论与统计学原理chapt2englishGraphicalMethodsfordescribingQuantitativedataQuantitativedatasetsconsistofdatathatarerecordedonameaningfulnumericalscale.Fordescribing,summarizing,suchdatasets,weintroduceherethreegraphicalmethods:dotplots,stem-and-leafdisplays,andhistograms.概率论与统计学原理chapt2englishExampleEPAGAS36.332.740.536.238.536.341.037.037.139.941.037.336.537.939.036.831.837.240.336.936.941.237.636.035.532.537.340.736.732.937.136.633.937.934.836.433.137.437.033.844.932.940.235.938.640.537.037.133.939.836.836.536.438.239.436.637.637.840.134.030.033.237.738.335.336.137.035.938.036.837.237.437.735.734.438.238.735.635.235.042.137.540.035.638.838.439.036.734.838.136.733.634.235.139.739.335.834.539.536.9EPAMileageRatingson100Cars概率论与统计学原理chapt2englishDotPlots点图Dotplotcondensesthedatabygropingallvaluesthatarethesametogetherintheplot.Inthedotplot,thehorizontalaxisisascaleforthequantitativevariableandthenumericalvalueofeachmeasurementinthedatasetislocatedonthehorizontalscalebyadot.Whendatavaluesrepeat,thedotsareplacedaboveoneanother.Seethefigureintheexamplebelow.概率论与统计学原理chapt2englishDotPlot概率论与统计学原理chapt2englishStem-and-LeafDisplay茎叶图

Stem-and-leafdisplaycombinesgraphictechniqueandsortingtechnique.Itisverypopularforsummarizingnumericaldata.概率论与统计学原理chapt2english1. DivideEachObservationintoStemValueandLeafValuetheleadingdigit(s)becomesthestemthetrailingdigit(s)becomestheleaf

2.Data:21,24,24,26,27,27,30,32,38,4126Stem-and-LeafDisplay概率论与统计学原理chapt2englishStem-and-LeafDisplayExampleConstructastem-and-leafdisplayofthefollowingsetof20testscores.8274886658747884967662687292867652768278概率论与统计学原理chapt2englishStem-and-LeafDisplayFigure1: 20ExamScores 5 28 6 268 7 24466688 8 22468 9 26概率论与统计学原理chapt2englishStem-and-LeafDisplayStem-and-leafofMPGN=100LeafUnit=0.10300318325799331268993402458835012356678993601233445566778993700001112233445667789938012234567839003457894001235574100242143449概率论与统计学原理chapt2englishHistogramsDividethedatasetintoclassintervalsofequalsizeCounttheclassfrequencyorcalculatetheclassrelativefrequencyConductthehistogram概率论与统计学原理chapt2english1. DetermineRange2.ComputeClassIntervals(Width)3. SelectNumberofClassesUsuallyBetween5&15Inclusive 4. DetermineClassBoundaries(Limits)5. CountObservations&AssigntoClassesClassify分类theQuantitativeData概率论与统计学原理chapt2english概率论与统计学原理chapt2englishHistogramMPGfrequency概率论与统计学原理chapt2englishHistogramTheEffectoftheSizeofadataSetontheOutlineofaHistogram概率论与统计学原理chapt2englishExerciseCalculatethenumberofthe500measurementsfallingintoeachofthemeasurementclasses.Thengraphafrequencyhistogramforthesedata.MeasurementClassRelativeFrequency0.5-2.52.5-4.54.5-6.56.5-8.58.5-10.510.5-12.512.5-14.514.5-16.50.100.150.250.200.050.100.100.05概率论与统计学原理chapt2englishSummationNotation总和符号Summationissomethingthatisdonequiteofteninmathematics,andthereisasymbolthatmeanssummation.ThatsymbolisthecapitalGreeklettersigma∑,andsothenotationissometimescalledSigmaNotationinsteadofSummationNotation.概率论与统计学原理chapt2englishNumerical数值MethodsfordescribingQuantitativedataTwomostimportantdatacharacteristics:Centraltendency:thetendencyofthedatatocluster,orcentre.Variability:thedispersionorspreadofthedata.概率论与统计学原理chapt2englishCentralTendency集中趋势

MeanMedianMode概率论与统计学原理chapt2englishDEF2.4Themean(arithmeticmean)ofasetofdataisthesumofthemeasurementsdividedbythenumberofmeasurementscontainedinthedataset.Themean(average)ofasetofdata(asample),x1,x2,...,xn,isdefinedbyMean平均数概率论与统计学原理chapt2englishMeanExampleRawData: 10.3 4.9 8.9 11.7 6.3 7.7XnXXXXXXiin11234566103498911763776830.......概率论与统计学原理chapt2englishMeanExample(EPAGAS)Themeangasmileageforthe100carsis概率论与统计学原理chapt2englishMedian中位数DEF2.5Themedianofaquantitativedatasetisthemiddlevalueofthedatarankedinascending(ordescending)order.PositionofMedianinSequencePositioningPointn122.Median概率论与统计学原理chapt2englishRawData: 24.1 22.6 21.5 23.7 22.6Ordered: 21.5 22.6 22.6 23.7 24.1Position: 1 2 3 4 5PositioningPointMediann1251230226..MedianExampleOdd-SizedSample概率论与统计学原理chapt2englishRawData: 10.3 4.9 8.9 11.7 6.3 7.7Ordered: 4.9 6.3 7.7

8.9 10.3 11.7Position: 1 2 3

4 5 6PositioningPointMediann126123577892830....MedianExampleEven-SizedSample概率论与统计学原理chapt2englishMedianExample(EPAGAS)Themedianis37.0.Thesamplesizen=100isanevennumberandtherearetwomiddlevalueslocatedat50thand51stpositionsafterordering.Thesetwomiddlevaluesare37.0and37.0andso,themedianis37.0.Thisvalueimpliesthatabouthalfofthe100mileagesinthedatasetfallbelow37.0andhalflieabove37.0.概率论与统计学原理chapt2englishComparingtheMeanandMedianAdatasetsaidtobeskewed斜的

ifonetailofthedistributionhasmoreextremeobservationsthanothertail.Ifthedatasetisskewedtotheright,thenthemedianislessthanthemean.Ifthedatasetissymmetric对称,thenthemedianisequaltothemean.Ifthedatasetisskewedtotheleft,thenthemedianislargerthanthemean.概率论与统计学原理chapt2englishDEF2.6Themodeisthemeasurementthatoccursmostfrequentlyinthedataset.1. MayBeNoModeorSeveralModes2. MayBeUsedforQuantitative&QualitativeDataMode重数概率论与统计学原理chapt2english

RawData: 10.3 4.9 8.9 11.7 6.3 7.7RawData: 6.3 4.9 8.9 6.3 4.9 4.9RawData: 21 28 28 41 43 43ModeExample概率论与统计学原理chapt2englishModeExamplee.g.considerthegradesof18students,B,C,B,A,F,D,B,C,BC,B,A,F,C,B,D,C,AGrade: ABCDFFrequency:36522Themodeisthegrade"B".概率论与统计学原理chapt2englishModeExample(EPAGAS)Modeofthemileageratingis37.0(occursmostoften)概率论与统计学原理chapt2englishExerciseCalculatethemean,median,andmodeforeachofthefollowingsamples:7,-2,3,3,0,42,3,5,3,2,3,4,3,5,1,2,3,451,50,47,50,48,41,59,68,45,37概率论与统计学原理chapt2englishVariationvariability离散程度RangeVarianceStandarddeviation概率论与统计学原理chapt2englishRange极差DEF2.8Therangeofaquantitativedatasetisequaltothelargestmeasurementminusthesmallestmeasurement.Itisthesimplestmeasureofdispersion.Range=Max-MinItisverysensitivetoextremevalues.概率论与统计学原理chapt2englishRangeExampleExampleForthedataset{11,12,13,13,13,14,15},Forthedataset{9,10,11,13,15,16,17}

=13,andrange=15-11=4=13,andrange=17-9=8概率论与统计学原理chapt2englishVariance方差&StandardDeviation标准差Thevarianceandstandarddeviationmeasurethespreadofthedatasetaroundthemean.Itistheaverageofthesquaresofthedistanceeachmeasurementinthedatasetisfromthemeanofallthemeasurementsinthedataset.Notethatthevariance,σ2,ofapopulationisdefinedas概率论与统计学原理chapt2englishSampleVarianceDEF2.8Thesamplevariance,

s2forasampleofnmeasurementsisequaltothesumofthesquareddistancesfromthemeandividedby(n-1).概率论与统计学原理chapt2englishSampleVarianceFormulan-1indenominator!(UseNifPopulationVariance)概率论与统计学原理chapt2englishVarianceExamplee.g.(1)Forthesample{11,12,13,13,13,14,15},=13

(2)Forthesample{9,10,11,13,15,16,17}=13概率论与统计学原理chapt2englishSampleStandardDeviationDEF2.9Thesamplestandarddeviationiss,thepositivesquarerootofthevariance.概率论与统计学原理chapt2englishInterpretingStandardDeviationTounderstandinghowthestandarddeviationprovidesameasureofvariabilityofadataset,consideraspecificdatasetandanswerthefollowingquestions.Howmanymeasurementsarewithin1standarddeviationofthemean?Howmanymeasurementsarewithin2standarddeviationsofthemean?概率论与统计学原理chapt2english1.Chebyshev'sRule

Letkbeanypositivenumbergreaterthan1.Foranydataset(regardlessoftheshapeofthefrequencydistributionofthedata),theproportionofobservationsthatliewithinkstandarddeviationsofthemeanisatleast1-1/k2.概率论与统计学原理chapt2english1.Chebyshev'sRuleThisrulesaysthatwithintwostandarddeviationsofthemean(k=2),(-2s,+2s),youwillalwaysfindatleast75%ofthedata(since1-1/k2=1-1/4=0.75)andthatwithinthreestandarddeviationsofthemean(k=3),(-3s,+3s),youwillalwaysfindatleast89%ofthedata(since1-1/k2=1-1/9=0.89).Remarks:1.Chebyshev’sruleappliestoanydataset,regardlessoftheshapeofthefrequencydistributionofthedata.2.Chebyshev’srulecanapplytosampleandpopulationaswell.概率论与统计学原理chapt2english2.EmpiricalRule

经验法则Theempiricalruleisaruleofthumbthatappliestodatasetswithfrequencydistributionsthataremound-shaped(bell-shaped)andsymmetric.Approximately68%ofthemeasurementswillfallwithin1standarddeviationofthemean,i.e.,withintheinterval(–s,+s)forsampleand(μ–σ,μ+σ)forpopulation.Approximately95%ofthemeasurementswillfallwithin2standarddeviationsofthemean,i.e.,withintheinterval(–2s,+2s)forsampleand(μ–2σ,μ+2σ)forpopulation.Approximately99.7%ofthemeasurementswillfallwithin3standarddeviationsofthemean,i.e.,withintheinterval(–3s,+3s)forsampleand(μ–3σ,μ+3σ)forpopulation.概率论与统计学原理chapt2englishExampleExample2.12(pp.64-65).AmanufactureofautomobilebatteriesclaimsthattheaveragelengthoflifeforitsgradeAbatteryis60months.However,theguaranteeonthisbrandisforjust36months.Supposethestandarddeviationofthelifelengthisknowntobe10months,andthefrequencydistributionofthelife-lengthdataisknowntobemound-shaped.a.Approximatelywhatpercentageofthemanufacturer’sgradeAbatterieswilllastmorethan50months,assumingthemanufacturer’sclaimistrue?b.Approximatelywhatpercentageofthemanufacturer’sgradeAbatterieswilllastlessthan40months,assumingthemanufacturer’sclaimistrue?c.Supposeyourbatterylasts37months.Whatcouldyouinferaboutthemanufacturer’sclaim?概率论与统计学原理chapt2englishSolutionThepercentageofbatterieslastingmorethan50monthsisapproximately84%ofthebatteriesshouldhavelifelengthexceeding50months.Approximately2.5%ofthebatteriesshouldfailpriorto40months.IfyouaresounfortunatethatyourgradeAbatteryfailsat37months,youcanmaketwoinferences:Eitheryourbatterywasoneoftheapproximately2.5%thatfailpriorto40months,orsomethingaboutthemanufacturer’sclaimisnottrue.Becausethechancesaresosmallthatabatteryfailsbefore40months.概率论与统计学原理chapt2englishNumericalMeasuresofRelativeStanding相对位置Measuresofrelativestandingarenumberswhichindicatewhereaparticularvalueliesinrelationtotherestofvaluesinadataset.PercentilesZ-Score概率论与统计学原理chapt2englishPercentiles百分位DEF2.11Supposethemeasurementsx1,x2,...,xnhavebeenrankedinascendingorder.Thepthpercentileisanumbersuchthatp%ofthemeasurementsfallbelowthepthpercentileand(100-p)%fallaboveit.Lowerquartile(firstquartile),Q1isthe25thpercentile.Upperquartile(thirdquartile),Q3isthe75thpercentile.Themedianisthe50thpercentile(orsecondquartile).概率论与统计学原理chapt2englishProcedureforcalculatingpercentiles

Arrangethenobservationsinascendingorder,x(1),x(2),...,x(n).Calculatethepositionindexk=(pn)/100,wherepisthepercentileofinterestandnisthesamplesize.3a.Ifkisaninteger,thepthpercentileis(x(k)+x(k+1))/2.3b.Ifkisnotaninteger,thenextintegervaluegreaterthankisthepthpercentile.概率论与统计学原理chapt2englishcalculatingpercentiles

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论