2023年厦门灌口中学数学高一第二学期期末监测模拟试题含解析_第1页
2023年厦门灌口中学数学高一第二学期期末监测模拟试题含解析_第2页
2023年厦门灌口中学数学高一第二学期期末监测模拟试题含解析_第3页
2023年厦门灌口中学数学高一第二学期期末监测模拟试题含解析_第4页
2023年厦门灌口中学数学高一第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.2.在中,,且面积为1,则下列结论不正确的是()A. B. C. D.3.已知,,则()A. B. C. D.4.已知命题,则命题的否定为()A. B.C. D.5.直线与直线平行,则实数a的值为()A. B. C. D.66.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+27.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用表示,方差分别用表示,则A. B.C. D.8.已知向量,则下列结论正确的是A. B. C.与垂直 D.9.一个球自高为米的地方自由下落,每次着地后回弹高度为原来的,到球停在地面上为止,球经过的路程总和为()米A. B. C. D.10.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在边长为2的正△ABC所在平面内,以A为圆心,为半径画弧,分别交AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.12.已知P1(x1,y1),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若,则x1x2+y1y2的值为_____.13.___________.14.已知与的夹角为求=_____.15.已知,若对任意,均有,则的最小值为______;16.在中,角,,所对的边分别为,,,已知,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在公差是整数的等差数列中,,且前项和.(1)求数列的通项公式;(2)令,求数列的前项和.18.已知数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)令,数列的前项和为,若不等式对任意恒成立,求实数的取值范围.19.已知函数(I)求的值(II)求的最小正周期及单调递增区间.20.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.(1)设总造价(元)表示为长度的函数;(2)当取何值时,总造价最低,并求出最低总造价.21.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由正弦定理可得,再结合余弦定理求解即可.【详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【点睛】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.2、C【解析】

根据三角形面积公式列式,求得,再根据基本不等式判断出C选项错误.【详解】根据三角形面积为得,三个式子相乘,得到,由于,所以.所以,故C选项错误.所以本小题选C.【点睛】本小题主要考查三角形面积公式,考查基本不等式的运用,属于中档题.3、A【解析】

由,代入运算即可得解.【详解】解:因为,,所以.故选:A.【点睛】本题考查了两角差的正切公式,属基础题.4、C【解析】

根据全称命题的否定是特称命题,可直接得出结果.【详解】命题“”的否定是“”.故选C【点睛】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.5、A【解析】

直接利用斜率相等列方程求解即可.【详解】因为直线与直线平行,所以,故选:A.【点睛】本题主要考查两直线平行的性质:斜率相等,属于基础题.6、D【解析】

首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.7、D【解析】

分别计算平均值和方差,比较得到答案.【详解】由题意可得,,.故.故答案选D【点睛】本题考查了数据的平均值和方差的计算,意在考查学生的计算能力.8、C【解析】

可按各选择支计算.【详解】由题意,,A错;,B错;,∴,C正确;∵不存在实数,使得,∴不正确,D错,故选C.【点睛】本题考查向量的数量积、向量的平行,向量的模以及向量的垂直等知识,属于基础题.9、D【解析】

设球第次到第次着地这一过程中球经过的路程为米,可知数列是以为首项,以为公比的等比数列,由此可得出球经过的路程总和为米.【详解】设球第次到第次着地这一过程中球经过的路程为米,则,由题意可知,数列是以为首项,以为公比的等比数列,因此,球经过的路程总和米.故选:D.【点睛】本题考查等比数列的实际应用,涉及到无穷等比数列求和问题,考查计算能力,属于中等题.10、D【解析】

因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【点睛】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由三角形ABC的边长为2不难求出三角形ABC的面积,又由扇形的半径为,也可以求出扇形的面积,代入几何概型的计算公式即可求出答案.【详解】由题意知,在△ABC中,BC边上的高AO正好为,∴圆与边CB相切,如图.S扇形=×××=,S△ABC=×2×2×=,∴P==.【点睛】本题考查面积型几何概型概率的求法,属基础题.12、-【解析】

先利用平面向量数量积的定义和坐标运算得到,再利用两角和的正弦公式和平方关系进行求解.【详解】根据题意知,又P1,P2在单位圆上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ为钝角,联立①②求得cosθ=-.【点睛】本题主要考查平面向量的数量积定义和坐标运算、两角和的正弦公式,意在考查学生的逻辑思维能力和基本运算能力,属于中档题.13、【解析】

先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.14、【解析】

由题意可得:,结合向量的运算法则和向量模的计算公式可得的值.【详解】由题意可得:,则:.【点睛】本题主要考查向量模的求解,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.15、【解析】

根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.16、30°【解析】

直接利用正弦定理得到或,再利用大角对大边排除一个答案.【详解】即或,故,故故答案为【点睛】本题考查了正弦定理,没有利用大角对大边排除一个答案是容易发生的错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)设等差数列的公差为,由题意知,的最小值为,可得出,可得出的取值范围,结合,可求出的值,再利用等差数列的通项公式可求出;(2)将数列的通项公式表示为分段形式,即,于是得出可得出的表达式.【详解】(1)设等差数列的公差为,则,由题意知,的最小值为,则,,所以,解得,,,因此,;(2).当时,,则,;当时,,则,.综上所述:.【点睛】本题考查等差数列通项公式以及绝对值分段求和,解题的关键在于将的最小值转化为与项相关的不等式组进行求解,考查化归与转化数学思想,属于中等题.18、(1)(2)【解析】试题分析:解:(1)当时,,解得;当时,,∴,故数列是以为首项,2为公比的等比数列,故.4分(2)由(1)得,,∴5分令,则,两式相减得∴,7分故,8分又由(1)得,,9分不等式即为,即为对任意恒成立,10分设,则,∵,∴,故实数t的取值范围是.12分考点:等比数列点评:主要是考查了等比数列的通项公式和求和的运用,属于基础题.19、(I)2;(II)的最小正周期是,.【解析】

(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值.(Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间.【详解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,则f()=﹣2sin()=2,(Ⅱ)因为.所以的最小正周期是.由正弦函数的性质得,解得,所以,的单调递增区间是.【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.20、(1),(2)当时,总造价最低为元【解析】

(1)根据题意得矩形的长为,则矩形的宽为,中间区域的长为,宽为列出函数即可.(2)根据(1)的结果利用基本不等式即可.【详解】(1)由矩形的长为,则矩形的宽为,则中间区域的长为,宽为,则定义域为则整理得,(2)当且仅当时取等号,即所以当时,总造价最低为元【点睛】本题主要考查了函数的表示方法,以及基本不等式的应用.在利用基本不等式时保证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论