北京市平谷区市级名校2022-2023学年数学高一第二学期期末监测试题含解析_第1页
北京市平谷区市级名校2022-2023学年数学高一第二学期期末监测试题含解析_第2页
北京市平谷区市级名校2022-2023学年数学高一第二学期期末监测试题含解析_第3页
北京市平谷区市级名校2022-2023学年数学高一第二学期期末监测试题含解析_第4页
北京市平谷区市级名校2022-2023学年数学高一第二学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是△所在平面上的一点,若,则的最小值为A. B. C. D.2.在中,,,则()A. B. C. D.3.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.24.若,则函数的最小值是()A. B. C. D.5.若,,则与的夹角为()A. B. C. D.6.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面7.在中,角的对边分别是,已知,则()A. B. C. D.或8.已知不等式的解集为,则不等式的解集为()A. B.C. D.9.某学校为了解1000名新生的身体素质,将这些学生编号1,2,……,1000,从这些新生中用系统抽样方法等距抽取50名学生进行体质测验.若66号学生被抽到,则下面4名学生中被抽到的是()A.16 B.226 C.616 D.85610.已知,则的值等于()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知的三边分别是,且面积,则角__________.12.若数列满足(),且,,__.13.已知锐角、满足,,则的值为______.14.设向量,且,则__________.15.若,,则___________.16.向量.若向量,则实数的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前n项和为,,且.(1)求数列的通项公式;(2)若数列为递增数列,数列满足,求数列的前n项和.(3)在条件(2)下,若不等式对任意正整数n都成立,求的取值范围.18.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)19.设数列满足.(1)求的通项公式;(2)求数列的前项和.20.如图,在处有一港口,两艘海轮同时从港口处出发向正北方向匀速航行,海轮的航行速度为20海里/小时,海轮的航行速度大于海轮.在港口北偏东60°方向上的处有一观测站,1小时后在处测得与海轮的距离为30海里,且处对两艘海轮,的视角为30°.(1)求观测站到港口的距离;(2)求海轮的航行速度.21.已知,其中,,.(1)求的单调递增区间;(2)在中,角,,所对的边分别为,,,,,且向量与共线,求边长和的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:利用向量的加法运算,设的中点为D,可得,利用数量积的运算性质可将原式化简为,为AD中点,从而得解.详解:由,可得.设的中点为D,即.点P是△ABC所在平面上的任意一点,为AD中点.∴.当且仅当,即点与点重合时,有最小值.故选C.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.2、A【解析】

本题首先可根据计算出的值,然后根据正弦定理以及即可计算出的值,最后得出结果。【详解】因为,所以.由正弦定理可知,即,解得,故选A。【点睛】本题考查根据解三角形的相关公式计算的值,考查同角三角函数的相关公式,考查正弦定理的使用,是简单题。3、A【解析】

线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【点睛】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。4、B【解析】

直接用均值不等式求最小值.【详解】当且仅当,即时,取等号.故选:B【点睛】本题考查利用均值不等式求函数最小值,属于基础题.5、A【解析】

根据平面向量夹角公式可求得,结合的范围可求得结果.【详解】设与的夹角为,又故选:【点睛】本题考查平面向量夹角的求解问题,关键是熟练掌握两向量夹角公式,属于基础题.6、C【解析】

对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.7、B【解析】

由已知知,所以B<A=,由正弦定理得,==,所以,故选B考点:正弦定理8、B【解析】

首先根据题意得到,为方程的根,再解出的值带入不等式即可.【详解】有题知:,为方程的根.所以,解得.所以,解得:或.故选:B【点睛】本题主要考查二次不等式的求法,同时考查了学生的计算能力,属于简单题.9、B【解析】

抽样间隔为,由第三组中的第6个数被抽取到,结合226是第12组中的第6个数,从而可得结果.【详解】从这些新生中用系统抽样方法等距抽取50名学生进行体质测验,抽样间隔为,号学生被抽到,第四组中的第6个数被抽取到,226是第12组中的第6个数,被抽到,故选:B.【点睛】本题主要考查系统抽样的性质,确定抽样间隔是解题的关键,属于基础题.10、D【解析】

根据分段函数的定义域以及函数解析式的关系,代值即可.【详解】故选:D【点睛】本题考查了分段函数的求值问题,考查了学生综合分析,数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.12、1【解析】

由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.14、【解析】因为,所以,故答案为.15、【解析】

将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.16、-3【解析】

试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时:;当时:(2)(3)【解析】

(1)直接利用等比数列公式得到答案.(2)利用错位相减法得到答案.(3)将不等式转化为,根据双勾函数求数列的最大值得到答案.【详解】(1)当时:当时:(2)数列为递增数列,,两式相加,化简得到(3)设原式(为奇数)根据双勾函数知:或时有最大值.时,原式时,原式故【点睛】本题考查了等比数列的通项公式,错位相减法求前N项和,恒成立问题,将恒成立问题转化为利用双勾函数求数列的最大值是解题的关键,此题综合性强,计算量大,意在考查学生对于数列公式方法的灵活运用.18、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小值时:解:设楼房每平方米的平均综合费用,,当且仅当时,等号取到.所以,当时,最小值为5000元.19、(1);(1).【解析】

(1)在中,将代得:,由两式作商得:,问题得解.(1)利用(1)中结果求得,分组求和,再利用等差数列前项和公式及乘公比错位相减法分别求和即可得解.【详解】(1)由n=1得,因为,当n≥1时,,由两式作商得:(n>1且n∈N*),又因为符合上式,所以(n∈N*).(1)设,则bn=n+n·1n,所以Sn=b1+b1+…+bn=(1+1+…+n)+设Tn=1+1·11+3·13+…+(n-1)·1n-1+n·1n,①所以1Tn=11+1·13+…(n-1)·1n-1+(n-1)·1n+n·1n+1,②①-②得:-Tn=1+11+13+…+1n-n·1n+1,所以Tn=(n-1)·1n+1+1.所以,即.【点睛】本题主要考查了赋值法及方程思想,还考查了分组求和法及乘公比错位相减法求和,考查计算能力及转化能力,属于中档题.20、(1)海里;(2)速度为海里/小时【解析】

(1)由已知可知,所以在中,运用余弦定理易得OA的长.(2)因为C航行1小时到达C,所以知道OC的长即可,即求BC的长.在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【详解】(1)因为海伦的速度为20海里/小时,所以1小时后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论