版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.2.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.3.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.4.执行如图所示的程序,已知的初始值为,则输出的的值是()A. B. C. D.5.掷一枚均匀的硬币,如果连续抛掷2020次,那么抛掷第2019次时出现正面向上的概率是()A. B. C. D.6.若,,,点C在AB上,且,设,则的值为()A. B. C. D.7.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.8.在学习等差数列时,我们由,,,,得到等差数列的通项公式是,象这样由特殊到一般的推理方法叫做()A.不完全归纳法 B.数学归纳法 C.综合法 D.分析法9.某班20名学生的期末考试成绩用如图茎叶图表示,执行如图程序框图,若输入的()分别为这20名学生的考试成绩,则输出的结果为()A.11 B.10 C.9 D.810.若,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,点,则________.12.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.13.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175cm,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x,那么x的值为________.14.在轴上有一点,点到点与点的距离相等,则点坐标为____________.15.在等差数列中,公差不为零,且、、恰好为某等比数列的前三项,那么该等比数列公比的值等于____________.16.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)设,求满足的实数的值;(2)若为上的奇函数,试求函数的反函数.18.在等差数列中,,且前7项和.(1)求数列的通项公式;(2)令,求数列的前项和.19.如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援?(角度精确到1°,参考数据:,)20.已知等差数列的前n项和为,且,.(1)求;(2)求.21.在中,角所对的边是,若向量与共线.(1)求角的大小;(2)若,求周长的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【点睛】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.2、B【解析】
首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.3、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.4、C【解析】
第一次运行:,满足循环条件因而继续循环;接下来继续写出第二次、第三次运算,直至,然后输出的值.【详解】初始值第一次运行:,满足循环条件因而继续循环;第二次运行:,满足循环条件因而继续循环;第三次运行:,不满足循环条件因而继续循环,跳出循环;此时.故选:C【点睛】本题是一道关于循环结构的问题,需要借助循环结构的相关知识进行解答,需掌握循环结构的两种形式,属于基础题.5、B【解析】
根据概率的性质直接得到答案.【详解】根据概率的性质知:每次正面向上的概率为.故选:.【点睛】本题考查了概率的性质,属于简单题.6、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.7、B【解析】
根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).8、A【解析】
根据题干中的推理由特殊到一般的推理属于归纳推理,但又不是数学归纳法,从而可得出结果.【详解】本题由前三项的规律猜想出一般项的特点属于归纳法,但本题并不是数学归纳法,因此,本题中的推理方法是不完全归纳法,故选:A.【点睛】本题考查归纳法的特点,判断时要区别数学归纳法与不完全归纳法,考查对概念的理解,属于基础题.9、A【解析】
首先判断程序框图的功能,然后从茎叶图数出相应人数,从而得到答案.【详解】由算法流程图可知,其统计的是成绩大于等于120的人数,所以由茎叶图知:成绩大于等于120的人数为11,故选A.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.10、B【解析】试题分析:,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用两点间的距离公式求解即可.【详解】点A(2,1),B(5,﹣1),则|AB|.故答案为:.【点睛】本题考查两点间的距离公式的应用,基本知识的考查.12、0.5【解析】
由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.13、2【解析】
根据茎叶图的数据和平均数的计算公式,列出方程,即可求解,得到答案.【详解】由题意,可得,即,解得.【点睛】本题主要考查了茎叶图的认识和平均数的公式的应用,其中解答中根据茎叶图,准确的读取数据,再根据数据的平均数的计算公式,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.15、4【解析】
由题意将表示为的方程组求解得,即可得等比数列的前三项分别为﹑、,则公比可求【详解】由题意可知,,又因为,,代入上式可得,所以该等比数列的前三项分别为﹑、,所以.故答案为:4【点睛】本题考查等差等比数列的基本量计算,考查计算能力,是基础题16、【解析】
在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【点睛】本题考查了向量的夹角、模的运算,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)把代入函数解析式,代入方程即可求解.(2)由函数奇偶性得,然后求得的解析式,分段求解反函数即可.【详解】(1)当时,,由,得,即,解得.(2)为上的奇函数,,则.,由,,得,;由,,得,.函数的反函数为.【点睛】本题主要考查了函数的解析式及求法,考查了反函数的求法,属于中档题.18、(1);(2)Sn=•3n+1+【解析】
(1)等差数列{an}的公差设为d,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得bn=2n•3n,由数列的错位相减法求和即可.【详解】(1)等差数列{an}的公差设为d,a3=6,且前7项和T7=1.可得a1+2d=6,7a1+21d=1,解得a1=2,d=2,则an=2n;(2)bn=an•3n=2n•3n,前n项和Sn=2(1•3+2•32+3•33+…+n•3n),3Sn=2(1•32+2•33+3•34+…+n•3n+1),相减可得﹣2Sn=2(3+32+33+…+3n﹣n•3n+1)=2•(﹣n•3n+1),化简可得Sn=•3n+1+.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及化简运算能力,属于中档题.19、乙船应朝北偏东约的方向沿直线前往处救援.【解析】
根据题意,求得,利用余弦定理求得的长,在中利用正弦定理求得,根据题目所给参考数据求得乙船行驶方向.【详解】解:由已知,则,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,则,故乙船应朝北偏东约的方向沿直线前往处救援.【点睛】本小题主要考查解三角形在实际生活中的应用,考查正弦定理、余弦定理解三角形,属于基础题.20、(1);(2)【解析】
(1)由可求得公差,利用等差数列通项公式求得结果;(2)利用等差数列前项和公式可求得结果.【详解】(1)设等差数列公差为,则,解得:(2)由(1)知:【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度网络安全服务协议书
- 2024年度版权使用与授权合同
- 2024供水、供电合同范文
- 2024年建筑工程股权转让合同样本
- 2024城市轨道交通安检设备采购合同
- 文书模板-产品委外开发合作协议书
- 产业新城课件教学课件
- 2024年度企业品牌形象设计及VI手册整编合同
- 2024年度版权购买与授权合同具体内容
- 2024年废物回收居间买卖合同
- 2024《中央企业安全生产治本攻坚三年行动方案(2024-2026年)》
- 纪录片《园林》解说词
- 建筑专题摄影培训课件
- 《民间文学导论》课件
- 《输血查对制度》课件
- 拳击赛策划方案
- 分离性障碍教学演示课件
- 年会拜年祝福视频脚本
- 文松宋晓峰小品《非诚不找》奇葩男女来相亲金句不断台词剧本完整版
- 物理化学第二章 热力学第二定律
- 高磷血症患者护理查房课件
评论
0/150
提交评论