版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市光谷实验中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过点P(0,﹣1)的直线与抛物线x2=﹣2y公共点的个数为()A.0 B.1 C.2 D.1或2参考答案:D【考点】抛物线的简单性质.【分析】由抛物线的性质,当直线为y轴时,直线与抛物线x2=﹣2y有一个交点,当过P且直线的斜率存在时,直线与抛物线x2=﹣2y有两个公共点.【解答】解:由题意可知:P在抛物线x2=﹣2y内部,当直线为y轴时,直线与抛物线x2=﹣2y有一个交点,当过P且直线的斜率存在时,直线与抛物线x2=﹣2y有两个公共点,故选:D.2.在repeat语句的一般形式中有“until
A”,其中A是
(
)
A.循环变量
B.循环体
C.终止条件
D.终止条件为真参考答案:D
解析:ntil标志着直到型循环,直到终止条件成就为止3.已知样本:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的范围是(
)A.5.5~7.5
B.7.5~9.5
C.9.5~11.5
D.11.5~13.5参考答案:D4.(5分)从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是() A. 至少有一个黒球与都是红球 B. 至少有一个黒球与都是黒球 C. 至少有一个黒球与至少有1个红球 D. 恰有1个黒球与恰有2个黒球参考答案:D考点: 互斥事件与对立事件.专题: 阅读型.分析: 互斥事件是两个事件不包括共同的事件,对立事件首先是互斥事件,再就是两个事件的和事件是全集,由此规律对四个选项逐一验证即可得到答案.解答: 解:A中的两个事件是对立事件,故不符合要求;B中的两个事件是包含关系,不是互斥事件,故不符合要求;C中的两个事件都包含一个黑球一个红球的事件,不是互斥关系;D中的两个事件是互互斥且不对立的关系,故正确.故选D点评: 本题考查互斥事件与对立事件,解题的关键是理解两个事件的定义及两事件之间的关系.属于基本概念型题.5..设函数(为自然对数的底数),若曲线上存在点使得,则a的取值范围是A. B. C. D.参考答案:D【分析】法一:考查四个选项,发现有两个特殊值区分开了四个选项,0出现在了A,B两个选项的范围中,出现在了B,C两个选项的范围中,故通过验证参数为0与时是否符合题意判断出正确选项。法二:根据题意可将问题转化为在上有解,分离参数得到,,利用导数研究的值域,即可得到参数的范围。【详解】法一:由题意可得,,而由可知,当时,=为增函数,∴时,.∴不存在使成立,故A,B错;当时,=,当时,只有时才有意义,而,故C错.故选D.法二:显然,函数是增函数,,由题意可得,,而由可知,于是,问题转化为在上有解.由,得,分离变量,得,因为,,所以,函数在上是增函数,于是有,即,应选D.【点睛】本题是一个函数综合题,方法一的切入点是观察四个选项中与不同,结合排除法以及函数性质判断出正确选项,方法二是把问题转化为函数的最值问题,利用导数进行研究,属于中档题。6.在椭圆内有一点,为椭圆的右焦点,在椭圆上有一点,使的值最小,则此最小值为(
)A.
B.
C.
D.参考答案:A7.直线的倾斜角等于()
A.
B.
C.
D.参考答案:A8.已知点F为抛物线的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且,则的最小值为(
)A.6 B. C. D.参考答案:C9.若,则等于(
)A.
B.
C.
D.
参考答案:D10.抛物线的焦点坐标是(
)。A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的最大值是
.参考答案:12.如图为某天通过204国道某测速点的汽车时速频率分布直方图,则通过该测速点的300辆汽车中时速在[60,80)的汽车大约有
辆.参考答案:150由频率分布直方图求出通过该测速点的300辆汽车中时速在[60,80)的汽车所占频率,由此能求出通过该测速点的300辆汽车中时速在[60,80)的汽车大约有多少辆.解:由频率分布直方图得:通过该测速点的300辆汽车中时速在[60,80)的汽车所占频率为(0.020+0.030)×10=0.5,∴通过该测速点的300辆汽车中时速在[60,80)的汽车大约有:300×0.5=150辆.故答案为:150.13.将全体正整数排成一个三角形数阵:按照右图排列的规律,第n行从左向右的第1个数为___________.
参考答案:14.已知函数的导函数为,则_________.参考答案:【分析】先对函数求导,再将代入导函数,即可求出结果.【详解】因为,所以,所以.故答案为【点睛】本题主要考查导数的计算,熟记公式即可,属于基础题型.15.设f(x)=.利用课本中推导等差数列前n项和的公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为___
__.w.参考答案:16.已知点(2,﹣1)在直线l上的射影为(1,1),则直线l的方程为.参考答案:x﹣2y+1=0考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得直线l的斜率kl=,且过(1,1),由此能求出直线l的方程.解答:解:∵点(2,﹣1)在直线l上的射影为(1,1),k==﹣2,∴直线l的斜率kl=,∴直线l的方程y﹣1=(x﹣1),整理,得x﹣2y+1=0.故答案为:x﹣2y+1=0.点评:本题考查直线方程的求法,是基础题,解题时要认真审题,注意两直线位置关系的合理运用.17.观察下图:12343456745678910……则第________行的各数之和等于20112参考答案:1006三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=lnx﹣kx+1.(1)当k=2时,求函数的单调增区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围.参考答案:【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(2)问题转化为在(0,+∞)上恒成立,令,根据函数的单调性求出k的范围即可.【解答】解:函数y=f(x)的定义域为(0,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1)当k=2时,f(x)=lnx﹣2x+1,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由,所以函数的单调增区间为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由f(x)≤0得kx≥lnx+1,即在(0,+∞)上恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令,则.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由g'(x)>0得0<x<1,由g'(x)<0得x>1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以g(x)在(0,1)为增区间,在(1,+∞)为减区间,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以当x=1时,g(x)max=g(1)=1.故k≥1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣19.本题12分)如图,四棱锥中,平面,底面是直角梯形,且,,,。(1)求证:;(2)求点到平面的距离。
参考答案:解(1)由平面可推得,又,所以平面。从而可得。
…5分(2)过作,由(1)知:平面,所以。所以平面。在直角三角形中,,,,故点到平面的距离
…12分
略20.(本小题8分)如图,圆锥形封闭容器,高为h,圆锥内水面高为若将圆锥倒置后,圆锥内水面高为参考答案:圆锥正置与倒置时,水的体积不变,另外水面是平行于底面的平面,此平面截得的小圆锥与原圆锥成相似体,它们的体积之比为对应高的立方比. 解:16如图,△中,,,,在三角形内挖去一个半圆(圆心在边上,半圆与、分别相切于点、,与交于点),将△绕直线旋转一周得到一个旋转体。22.(本小题满分12分)数列是首项为,公比为的等比数列,数列满足
,(1)求数列的前项和的最大值;(2)求数列的前项和.参考答案:(1)由题意:,∴,∴数列是首项为3,公差为的等差数列,∴,∴由,得,∴数列的前项和的最大值为……4分(2)由(1)当时,,当时,,∴当时,当时,∴…
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年涂装防静电产品合作协议书
- 室外场地租赁合同
- 货车运输租赁合同
- 招生协议样书
- 音乐著作权授权协议
- 项目协议管理制度内容
- 智能化仓储与配送流程优化项目
- 数据科学与应用技术项目书
- 罐车租赁合同
- 医疗健康行业数字化管理与服务平台建设方案
- 2024年机动车检测站质量手册程序文件记录表格合集(根据补充要求编制)
- 公司未来发展规划及目标制定
- 2024年01月11067知识产权法期末试题答案
- 2025版国家开放大学法律事务专科《民法学(2)》期末纸质考试案例分析题库
- 2024年形势与政策 第一讲《读懂中国式现代化》
- 一年级家长会课件2024-2025学年
- 情侣防出轨合同模板
- 2024公安机关人民警察高级执法资格考试题及答案
- 2023-2024学年云南省昆明市五华区八年级(上)期末物理试卷
- 陕西省渭南市2023-2024学年七年级上学期期末考试数学试题(含答案)2
- 废弃催化剂中贵金属的回收
评论
0/150
提交评论