




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,那么()A. B. C. D.2.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”3.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.4.已知函数在一个周期内的图象如图所示.则的图象,可由函数的图象怎样变换而来(纵坐标不变)()A.先把各点的横坐标缩短到原来的倍,再向左平移个单位B.先把各点的横坐标缩短到原来的倍,再向右平移个单位C.先把各点的横坐标伸长到原来的2倍,再向左平移个单位D.先把各点的横坐标伸长到原来的2倍,再向右平移个单位5.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.已知向量,,则在方向上的投影为()A. B. C. D.7.已知正数、满足,则的最小值为()A. B. C. D.8.在平面直角坐标系xOy中,直线的倾斜角为()A. B. C. D.9.直线的倾斜角不可能为()A. B. C. D.10.下面一段程序执行后的结果是()A.6 B.4 C.8 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.12.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.13.在中,若,,,则________.14.已知无穷等比数列的首项为,公比为,则其各项的和为__________.15.在中,分别是角的对边,,且的周长为5,面积,则=______16.已知函数,的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形ABCD中,,,已知,.(1)求的值;(2)若,且,求BC的长.18.设.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.19.已知,,求证:(1);(2).20.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.21.(1)设,直接用任意角的三角比定义证明:.(2)给出两个公式:①;②.请仅以上述两个公式为已知条件证明:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.2、A【解析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【点睛】本题考查了互斥事件的定义.是基础题.3、D【解析】
首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【点睛】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.4、B【解析】
根据图象可知,根据周期为知,过点求得,函数解析式,比较解析式,根据图像变换规律即可求解.【详解】由在一个周期内的图象可得,,解得,图象过点,代入解析式得,因为,所以,故,因为,将函数图象上点的横坐标变为原来的得,再向右平移个单位得的图象,故选B.【点睛】本题主要考查了由部分图像求解析式,图象变换规律,属于中档题.5、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题6、D【解析】
直接利用向量的数量积和向量的投影的定义,即可求解,得到答案.【详解】由题意,向量,,则在方向上的投影为:.故选D.【点睛】本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】
由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.8、B【解析】
设直线的倾斜角为,,,可得,解得.【详解】设直线的倾斜角为,,.,解得.故选:B.【点睛】本题考查直线的倾斜角与斜率之间的关系、三角函数求值,考查推理能力与计算能力,属于基础题.9、D【解析】
根据直线方程,分类讨论求得直线的斜率的取值范围,进而根据倾斜角和斜率的关系,即可求解,得到答案.【详解】由题意,可得当时,直线方程为,此时倾斜角为;当时,直线方程化为,则斜率为:,即,又由,解得或,又由且,所以倾斜角的范围为,显然A,B都符合,只有D不符合,故选D.【点睛】本题主要考查了直线方程的应用,以及直线的倾斜角和斜率的关系,着重考查了分类讨论思想,以及推理与运算能力.10、A【解析】
根据题中的程序语句,直接按照顺序结构的功能即可求出。【详解】由题意可得:,,,所以输出为6,故选A.【点睛】本题主要考查顺序结构的程序框图的理解,理解语句的含义是解题关键。二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
利用切线长最短时,取最小值找点:即过圆心作直线的垂线,求出垂足点.就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为,则,所以当切线长取最小值时,取最小值,过圆心作直线的垂线,则点为垂足点,此时,直线的方程为,联立,得,点的坐标为.①若切线的斜率不存在,此时切线的方程为,圆心到该直线的距离为,合乎题意;②若切线的斜率存在,设切线的方程为,即.由题意可得,化简得,解得,此时,所求切线的方程为,即.综上所述,所求切线方程为或,故答案为或.【点睛】本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.12、5【解析】
试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质13、2;【解析】
利用余弦定理可构造关于的方程,解方程求得结果.【详解】由余弦定理得:解得:或(舍)本题正确结果:【点睛】本题考查利用余弦定理解三角形,属于基础题.14、【解析】
根据无穷等比数列求和公式求出等比数列的各项和.【详解】由题意可知,等比数列的各项和为,故答案为:.【点睛】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.15、【解析】
令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【点睛】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.16、【解析】
化简,再利用基本不等式以及辅助角公式求出的最大值,即可得到的最大值【详解】由题可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值为故答案为【点睛】本题考查三角函数的最值问题,涉及二倍角公式、基本不等式、辅助角公式等知识点,属于中档题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由正弦定理可得;(2)由(1)求得,然后利用余弦定理求解.【详解】(1)在中,由正弦定理,得,因为,,,所以;(2)由(1)可知,,因为,所以,在中,由余弦定理,得,因为,,所以,即,解得或,又,则.【点睛】本题考查正弦定理和余弦定理解三角形,掌握正弦定理和余弦定理是解题关键.18、(1)(2)【解析】
(1)代入参数值,解二次不等式即可;(2)不等式,即,故得到1,2是方程的两实根,根据韦达定理得到数值.【详解】(1)当时,不等式即为,∴或,因此原不等式的解集为.(2)不等式,即,由题意知,且1,2是方程的两实根,因此.【点睛】这个题目考查了二次不等式的解法,以及二次函数和二次不等式的关系,考查了二次不等式的韦达定理的应用,属于基础题.19、(1)证明见详解;(2)证明见详解.【解析】
(1)利用不等式性质,得,再证,最后证明;(2)先证,再证明.【详解】证明:(1)因为,所以,于是,即,由,得.(2)因为,所,又因为,所以,所以.【点睛】本题考查利用不等式性质证明不等式,需要熟练掌握不等式的性质,属综合基础题.20、(1);(2).【解析】试题分析:(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范围确定ωx+φ的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市轨道交通设计内容
- 威伯科WABCO ABS系统培训报告
- 学前课程内容学时安排
- 幼儿园科学教育活动及设计方案
- 演讲比赛活动设计
- 幼儿园大班安全教案:高温防中暑全攻略
- 2025汽车买卖合同版范本
- 2025个人借款合同范本参考
- 小班国庆假期安全
- 2025钢筋供应合同(版)
- 2024年中国光大银行招聘考试真题
- 2025-2030中国油漆和涂料消光剂行业市场发展趋势与前景展望战略研究报告
- 2025年山西焦煤集团国际发展股份有限公司招聘笔试参考题库附带答案详解
- 水泥装卸合同协议
- 金华兰溪市卫健系统普通高校招聘医学类笔试真题2024
- 2025年浙江省杭州市萧山区中考一模数学模拟试卷(含详解)
- 道路普通货运企业安全生产达标考评方法和考评实施细则
- DB15T 3516-2024野生动物救护站建设规范
- 火灾自动报警系统设计规范完整版2025年
- 能源消防安全课件
- 演唱会可行性研究报告
评论
0/150
提交评论