版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE14PAGE21西南科技大学专业方向设计报告课程名称:自动化专业方向设计设计名称:基于MCGS的锅炉温度控制系统设计
方向设计任务书学生班级:自动10XX班学生姓名:赵XX学号:2010XXXX设计名称:基于MCGS的锅炉温度控制系统设计起止日期:2013.10.20——2013.11.15指导教师:王顺利设计要求:(指导教师给出的具体设计要求)采用北京昆仑公司的MCGS工业控制组态软件,通过RS232/RS485转换器使PC机与选定下位机(PLC)进行通信。能够完成现场数据采集、实时和历史数据处理、报警和安全机制、工艺过程实时监控、趋势曲线等功能。分析相关控制参数并设置的整个控制系统。系统结构的整体设计设计控制系统硬件结构;针对具体的相关环节设计对相关器件进行选型,要求测温范围为0-100℃,选择合适类型的检测元件;根据要求绘制系统控制流程图。程序设计与实现设计控制程序实现对锅炉温度控制并进行模拟显示,有效考虑反馈调节。课程设计论文应完成的工作论文摘要,中英文均要求。关键词(3—5个),中英文关键词。前言、方案论证及方案选择、系统的硬件、软件设计或实验模拟分析、调试及结论、致谢、参考文献方向设计学生日志时间设计内容2013.10.20—2013.10.25查阅MCGS相关资料,了解MCGS基本操作及如何与PLC通信2013.10.25—2013.10.27对PLC、MCGS、传感器、可控硅执行机构进行分析2013.10.27—2013.10.29进行系统硬件连接2013.10.29—2013.11.02测试传感器、执行机构是否正常,有无偏差2013.11.02—2013.11.04编写程序2013.11.04—2013.11.06整定参数2013.11.06—2013.11.08整理资料,编写设计报告基于MCGS的锅炉温度控制系统设计摘要:锅炉是工业生产中主要的供热设备。电力、机械、冶金、化工、民用都需要锅炉提供热量,但是根据行业的不同,对锅炉的大小规模不尽相同。作为重要的工业设备,在保证其安全和稳定运行的情况下则应考虑其自动生产,提高自动运行能力及工作效率。本设计基于AE2000B实验设备上模拟现场锅炉温度控制系统,通过西门子S7-200PLC作为控制器,MCGS作为上位机,通过通信链接对锅炉温度进行实时监控,同时设计系列联锁,保证系统安全运行。关键词:锅炉温度AE2000BPLCMCGSBasedontheMCGSboilertemperaturecontrolsystemdesignAbstract:Theboileristhemainheatingequipmentintheindustrialmanufacture.Theelectricpower,themachinery,themetallurgicalindustry,thechemicalindustryandthecivilallneedtheheattheboileroffers.However,accordingtodifferentindustries,Thesizeoftheboilervariesfromonetoanother.Asanimportantindustrialequipment,ifwecouldensureitssafeandstableoperation,weshouldconsideritsautomaticproductionandimprovetheautomaticabilityanditsworkingefficiency.ThisdesignisbasedonAE2000BexperimentaldevicetosimulatethespotboilertemperaturecontrolsystembyusingtheSiemensS7-200PLCasthecontrollerandtheMCGSasuppermachine.Meanwhile,thecommunicationlinkwillsupervisetheboilertemperaturetimelyandtheinterlockingserieswillguaranteethesafeoperationofthesystem.Keywords:boilertemperatureAE2000BPLCMCGS1设计目的和意义锅炉生产在国民是工业中占据着重要的地位,早期的锅炉自动化程度很低,监控系统不完善,导致系统故障不断,但是锅炉因为适合各种行业仍然被广泛使用,锅炉的广泛使用使锅炉现代化成为必然。锅炉现代化的管理不但需要安全、高度自动化的控制方案,还需要考虑高效、节能、环保等方面的因素。所以对于锅炉的自动运行这一方面还需要我们做控制的人不断的研究和探索,力争将锅炉实际运行生产达到安全、高效的高度。本设计通过用PLC作为控制器,PID算法作为灵魂,对锅炉温度控制系统的设计,力争使锅炉控制系统结构简单、检修维护方便快捷、可靠性提高,同时增强控制系统的响应速度和稳定性,使锅炉控制系统的先进性整体提升。2控制要求采用北京昆仑公司的MCGS工业控制组态软件,通过RS232/RS485转换器使PC机与选定下位机(PLC)进行通信。能够完成现场数据采集、实时和历史数据处理、报警和安全机制、工艺过程实时监控、趋势曲线等功能。分析相关控制参数并设置的整个控制系统。3设计方案论证3.1锅炉部分分析构成锅炉的温度控制方法有很多种,但基本都是基于锅炉的给热量和散热量平衡的关系来确定的,当给热量和散热量平衡时炉温保持在给定的范围内。当某种因素出现变动时,从温度传感器采集的实际温度与给定温度进行比较,得到两者的差值,即偏差。控制器根据实际偏差值的具体情况按照指定规律发出相应信号,控制被控量的大小,使温度恢复到给定值的范围内,从而实现对温度的自动控制。根据不同类型的锅炉以及现场的具体情况有不同的控制方法。从用途就可分为生活锅炉、工业锅炉、电站锅炉。生活锅炉主要是在低压情况下运行,为日常生活提供热水,亦可称为热水锅炉,本设计即为此类锅炉的缩影;工业锅炉基本在高压下进行生产,其需要提供大量热量;电站锅炉主要是将水加热到高温高压的蒸汽状态,从而驱动汽轮机,进行发电,亦可成为蒸汽锅炉。另一方面主要从燃料的角度区分锅炉,主要有燃煤锅炉、燃油锅炉、燃气锅炉、电加热锅炉等。基于燃煤、燃油、燃气的三类锅炉均需要空气做助燃剂,当燃料与空气的比值适合时才能发挥最大的能效,因此此类控制系统必然会用到比值控制等复杂算法,同时燃烧的过程复杂、干扰多,还需要对烟气含氧量、炉膛火焰等情况进行监控,故而此类燃烧方式的锅炉大多需要复杂、精确地设计、调试验证及试运行后才能投入到现场生产中;电加热锅炉因为其提供能量方式单一,调节加热器的电流或者电压大小即可对炉温进行控制,同时延迟不大,能源使用率较高等因素被受亲睐,但是其能提供的能量较少因此使用的规模不大。表1不同燃料的锅炉性能分析燃煤锅炉燃气锅炉燃油锅炉电加热锅炉锅炉效率80%以下90%85%100%助燃剂空气空气空气无备注技术成熟、首次投资小、烟气污染大但是提供能量多,适合电厂蒸汽锅炉等规模较大场合技术成熟、天然气需要储罐或者管道运输、燃料成本高技术成熟、重油需储罐、烟气需要脱硫、燃料成本高供热较小、无污染、适合小规模场合使用基于实际条件及控制要求,本设计选择在AE2000B型实验装置下的电加热型热水锅炉作为对象。AE2000B型过程控制实验装置是浙大中控根据工业自动化及相关专业教学特点,吸取了国外同类实验装置的特点和长处,并与目前大型工业自动化现场紧密联系,采用了工业上广泛使用并处于领先的AI智能仪表加组态软件控制系统、DCS(分布式集散控制系统),经过精心设计,多次实验和反复论证,推出的一套基于本科,着重于研究生教学、学科基地建设的实验设备。AE2000型过程实验装置的检测信号、控制信号及被控信号均采用ICE标准,即电压1~5V、电流4~20mA。3.2控制器分析由于实际的工业现场情况复杂,干扰较多,因此在控制器方面因选择抗干扰能力强、运行稳定的控制器,综合单片机、PLC等控制器的特点,本设计选择西门子S7-200型PLC作为控制器。常用的西门子S7-200系列的PLC有224或226,本次设计选用224作为控制器。西门子S7-200系列PLC作为西门子推出的小型PLC,拥有体积小、通讯开放、程序和数据存储器较大、集成的RS485接口、扩展性良好、指令功能强大等特点,被广泛用于工业生产现场的小规模控制系统。表2控制器选型分析单片机PLC价格便宜贵功能随意开发部分受限稳定性相对较差好其他学习相对复杂、抗干扰能力弱、造价低学习简单、工程造价高、抗干扰能力强、可靠3.3组态软件分析组态软件在国内是一个约定俗成的概念,并没有明确的定义,它可以理解为“组态式监控软件”。是指用户通过类似“搭积木”的简单方式来完成自己所需要的软件功能,而不需要编写计算机程序,也就是所谓的“组态”。组态软件,又称组态监控软件系统软件。它是指一些数据采集与过程控制的专用软件。它们处在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。组态软件的应用领域很广,可以应用于电力系统、给水系统、石油、化工等领域的数据采集与监视控制以及过程控制等诸多领域。目前常用的组态软件有西门子的WINCC、北京昆仑的MCGS、亚控的组态王、北京三维的力控,国外的组态软件大多只针对自己的PLC,而国内的组态软件基本能与几大主流的PLC进行配合使用。表3主要组态软件情况对比WINCCMCGS组态王力控所属公司西门子北京昆仑亚控科技北京三维属性国际产品国内产品国内产品国内产品知名度较早出现国内组态第二品牌国内最早,装机量最多的组态软件近几年发展的产品兼容性支持西门子产品兼容性强兼容性强兼容性强其他软件加密不够严密,国内盗版多基于VB开发、效率较低、系统稳定性差国外组态软件的替代品,多用于需求较大场合系统相对稳定、驱动比较完善、推广和售后都较好本设计选择北京昆仑的组态软件MCGS作为上位机,MCGS是一套用于快速构造和生成计算机监控系统的组态软件。它能够在基于Microsoft的各种32位Windows平台上运行,通过对现场数据的采集处理,以动画显示、报警处理、流程控制和报表输出等多种方式向用户提供解决实际工程问题的方案,在自动化领域有着广泛的应用。4系统设计本设计使用西门子S7-200型PLC作为控制器,北京昆仑的组态软件MCGS作为上位机,通过现场温度传感器进行温度采集,使用可控硅调节加热器两端电压等系列方法控制加热效果,达到控制的所需要的工艺要求。目的在于设计过程中能够了解S7-200PLC是如何被运用于工业实际生产过程的,解决工业现场干扰多、情况复杂等情况下大多数控制器不稳定的问题。通过在上位机上动手操作和观察,实时远程监控锅炉内水温的具体情况,并得到完整的炉温实时曲线。同时监控工艺运行时是否正常,达到安全生产的目的。4.1工艺分析所选被控对象是常见的电加热锅炉,通过电加热棒与待加热液体直接进行热传递,将一定量的液体加热到工艺要求的温度。图1锅炉加热系统流程图待加热液体由丹麦泵直接抽到锅炉中,同时输送管道上面有电动调节阀,锅炉内部也有液位传感器,传感器与电动调节阀形成闭环控制回路,保证锅炉内部液体稳定,同时在程序内设定液位上下限,保证锅炉内运行安全。在锅炉内有电加热棒并通过单相SCR可控调压装置控制其输出电压,同时锅炉内有温度检测装置,两者与控制器PLC构成闭环控制回路,达到调节温度的目的。在本设计中要求控制锅炉温度,故而对于液位部分只检测锅炉内有无液体,将此液位作为参考值,在安全控制方面作为液位上、下限的报警值。4.2硬件选型本设计主要选择控制器、加热装置、温度检测装置、上位机选型等。控制器选择西门子S7-200系列PLC,型号为224;加热装置为电加热棒,可控硅调节其端电压,调压范围为0—220V;温度检测装置选择铂热电阻PT100,其温度测量范围为0—100℃。4.3硬件连接及I/O分配锅炉温度控制系统主要有温度传感器、变送器、控制器PLC、带MCGS的PC机作为上位机、执行机构可控硅调压电路等构成,其结构如图2。图2锅炉温度控制系统结构图计算机上装有MCGS可作为上位机,同时计算机通过PC/PPI电缆通过RS485通信与PLC进行通讯,西门子S7-200PLC与模拟量模块EM235安装在同一导轨上,PLC的CPU模块224有24个I/O接口,其中有14个输入端、10个输出端,输入端口外接开始按钮、停止按钮、急停按钮,输出端口外接工作指示灯、报警指示灯、正在加热指示灯,模拟量模块EM235有4路模拟量输入端口、1路模拟量输出端口,其中模拟量输入端口根据外接电路的接法不同可以分为1—5V电压型和4—20mA电流型,模拟量输出端可选择V或者I来确定需要电流输出还是电压输出。本设计选择3路数字量输入、2路数字量输出、1路模拟量标准电流输入、1路数字量标准电流输出,其具体分配情况见表4。表4PLC硬件连接情况及I/O分配名称类型地址备注开始按钮数字量(BOOL)I0.0停止按钮数字量(BOOL)I0.1常闭急停按钮数字量(BOOL)I0.2常闭工作指示数字量(BOOL)M0.0/Q0.0中间继电器/输出继电器报警指示数字量(BOOL)M1.0/Q0.1中间继电器/输出继电器加热指示数字量(BOOL)M1.1/Q0.2中间继电器/输出继电器温度采集模拟量(4—20mA)AIW0电流接法可控硅输出模拟量(4—20mA)AQW0电流接法温度实时值VD14比例参数设定VD132积分参数设定VD140微分参数设定VD144温度设定值VD250可控硅端电压VD320硬件连线主要有温度变送器的接线与PLC的接线、可控硅与PLC的接线。温度变送器PT100与PLC的接线如图3。图3温度变送器与PLC连接可控硅与电加热棒构成一个电压可调的模块,通过调节给到电热棒两端的电压大小来改变电加热棒对锅炉内液体供热的大小,从而达到加热的目的,单相SCR可调压装置与PLC的接线如图4。图4单相SCR可调压装置与PLC接线图4.4输入、输出信号转换由于采集的数据都为工程中的实际数据,单位、幅值和范围也不同,必须将其转换成标准形式才能被控制器PLC接受执行。转换的第一步是将给定值或A/D转换后得到整数值由16位转换成浮点数,转换后的下一步是将实数进一步转换成标准化实数,锅炉温度测量范围是0~100℃,模拟量的标准电信号是4-20mA,A/D转换后数值为6400-32000,设T为转换后的温度值,则其转换公式如下:(1)对于输出信号亦是同样的设计公式,设U为输出电压,其转换公式如下:(2)4.5系统框图设计锅炉温度的闭环控制回路,其具体框图如图5。图5锅炉温度闭环控制系统框图4.6控制对象模型本设计的锅炉水温控制系统科理解为一介滞后系统,其传递函数为:(3)5设计结果及分析5.1水箱水位检测水箱实际温度的检测是要把测得的温度量转化为0.0到1.0之间的数以便于PLC能够识别。因为PID只能针对浮点型实数进行运算,因此要先把温度变送器输出的值转换成16位的整型存储在累加寄存器AC0中,再将AC0中的值转化为32位的双整型继续存放于AC0中,接着把AC0中的数由双整型转化为实型,仍然存放到AC0中。鉴于实型数的小数点有6位,所以其相对来说还是比较精确的。接下来就要把实数再转化成PLC能够识别的0.0~1.0之间数。其具体程序见附录。5.2输出到可控硅电压经过PID运算后从AQW0输出的信号为6400—32000的标准值,可以直接加到可控硅模块控制电压大小,但是我们亦需要将其转换为可以识别的电压大小,其具体程序见附录。5.3PID算法在S7-200PLC中的实现S7-200的编程软件Micro/WIN提供了PID指令向导,PID控制程序可以通过指令向导自动生成,但是PID指令也能够被程序自动调用。首先选择运用PID算法的回路,本系统就一个回路,故选择回路0,如图6所示。图6回路选择第二步选择好回路后设定回路的参数,由于本设计采用水作为加热液体,而选择的PT100也是0—100℃的测温,因此给定范围的低限和高限分别为0和100,回路的参数暂时先不设定,如图7所示。图7给定值范围的设定第三步设置回路输入输出项,输入和输出量都是单级性的模拟量,全部选择“使用20%偏移量”,因为S7-200的单极性模拟量输入输出信号的数值范围是6400—32000,所以输入项的量程为6400—32000。如图8所示。图8回路输入输出参数性质配置界面5.3报警及系列连锁程序程序除了温度采集、电压大小转换、PID程序以外还需要设计报警程序以及程序连锁等系列附加程序,保证设备安全运行。添加的附加程序有:超温报警、超绝对高温停机保护、无水不加热程序等。这类程序虽然在系统正常运行时不会动作,但是在各类突发情况出现时能直接处理或者安全停机,达到保护设备的目的。这些功能的具体程序见附录。5.4控制系统仿真及参数整定在PID参数整定中,工程整定法因其固有的优点而受到广大工程技术人员的欢迎。同时工程整定法中的稳定边界法由于简单易行而仍在广泛的使用,但是稳态边界法在常规的实验中还是有其固有的弱点,如在做实验时必须把控制系统调到等幅震荡,这样就可能会影响实验设备受到损坏。此时,我们就想到利用软件仿真的形式来实现对PID参数的整定,而MATLAB/Simulink就给我们提供了一个良好的软件平台。下面我们在MATLAB/Simulink仿真环境下整定水箱温度PID控制参数。常规的PID参数整定根据PID控制模型,利用SIMULINK灵活的非线性设计功能,通过对系统对象分析及建模分析,综合实际情况可建立SIMULINK模型如图9所示:图9PID控制的SIMULINK模型根据传递函数的各项系数,通过调节PID的各个参数,得到不同数组下的曲线并对比分析。当Kp=100、KI=0.01、KD=50的时候运行SIMULINK模型,得到仿真曲线图如图10所示,得到理想的PID运行曲线。图10Kp=100、KI=0.01、KD=50时的仿真曲线图从图11可以看出系统在稳态时有比较小稳态误差,超调量为8.2%,在暂态时最大超调量比较大,曲线也比较陡峭,这么长的调整时间要求非常高的控制系统,所以还必须进一步调整控制参数,以使得系统工作在最佳的控制状态,通过多次试验,当Kp=50、KI=0.01、KD=50时得到最佳的控制效果如图11所示。图11Kp=50、KI=0.01、KD=50时的仿真曲线图在不改变参数的情况下,给系统加一个干扰,如图12所示:图12PID加扰动的SIMULINK模型运行SIMULINK模型得到相应的仿真曲线如图13所示:图13PID加扰动的仿真曲线根据图常规PID的抗干扰性测试看出,本次试验得到的参数还是比较理想的。经过常规PID的抗干扰测试,可以看出系统的响应曲线基本没有太大波动。5.4上位机界面及监控设计的控制系统采用MCGS作为上位机,通过上位机对PLC及运行情况进行监视,监视工艺流程及各类参数,同时可通过上位机可直接对现场运行情况进行操作,上位机具体界面如图14。图14组态界面6结束语通过这次方向设计,我有了很大的收获。首先感谢指导老师王顺利老师,他的悉心指导才使我做方向设计步步深入,同时感谢大学以来所有给我上课的老师,他们传授的知识让我大学有了很大的收获;第二:以前学习的很多理论知识很多已经忘记,这次设计使得我必须重新翻书查阅以前学习的知识,这是对以前知识的巩固;第三:明白了学习不能光动脑不动手,有很都看似已经弄懂了的知识在实际中完全不知怎么用,所以只有实践才能发现很多问题,才能把知识掌握得更加牢固,同时还能提高自己的动手能力,才能发现书本上的知识与实际运用是有很大的差距的。第四:要学会与他人交流,有交流就会有进步。参考文献[1]毕效辉,自动控制理论[M],北京,中国轻工业出版社,2012.1[2]薛定宇,控制系统极端及辅助设计[M],北京,清华大学出版社,2006.3[3]方康玲,过程控制系统[M],武汉,武汉理工大学出版社,2009.3[4]邵裕森,过程控制工程[M],北京,机械工业出版社,2013.1[5]陈建明,电气控制与PLC应用[M],北京,电子工业出版社,2010.1[6]柴瑞娟,西门子PLC高级培训教程[M],北京,人民邮电出版社,2009.3[7]西门子(中国)有限公司自动化与驱动集团,深入浅出西门子S7-200PLC[M],北京,北京航空航天大学出版社,2003[8]S7-200可编程控制器系统手册[Z][9]杨靖,基于PID算法的S7-200PLC锅炉水温控制系统[J],机床电器,2010(6),34-35[10]MCGS用户指南[Z]附录1、主程序2、电压转换子程序3、温度采集子程序基于C8051F单片机直流电动机反馈控制系统的设计与研究基于单片机的嵌入式Web服务器的研究MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究基于模糊控制的电阻钎焊单片机温度控制系统的研制基于MCS-51系列单片机的通用控制模块的研究基于单片机实现的供暖系统最佳启停自校正(STR)调节器单片机控制的二级倒立摆系统的研究基于增强型51系列单片机的TCP/IP协议栈的实现基于单片机的蓄电池自动监测系统基于32位嵌入式单片机系统的图像采集与处理技术的研究基于单片机的作物营养诊断专家系统的研究基于单片机的交流伺服电机运动控制系统研究与开发基于单片机的泵管内壁硬度测试仪的研制基于单片机的自动找平控制系统研究基于C8051F040单片机的嵌入式系统开发基于单片机的液压动力系统状态监测仪开发模糊Smith智能控制方法的研究及其单片机实现一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制基于双单片机冲床数控系统的研究基于CYGNAL单片机的在线间歇式浊度仪的研制基于单片机的喷油泵试验台控制器的研制基于单片机的软起动器的研究和设计基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究基于单片机的机电产品控制系统开发基于PIC单片机的智能手机充电器基于单片机的实时内核设计及其应用研究基于单片机的远程抄表系统的设计与研究基于单片机的烟气二氧化硫浓度检测仪的研制基于微型光谱仪的单片机系统单片机系统软件构件开发的技术研究基于单片机的液体点滴速度自动检测仪的研制基于单片机系统的多功能温度测量仪的研制基于PIC单片机的电能采集终端的设计和应用基于单片机的光纤光栅解调仪的研制气压式线性摩擦焊机单片机控制系统的研制基于单片机的数字磁通门传感器基于单片机的旋转变压器-数字转换器的研究基于单片机的光纤Bragg光栅解调系统的研究单片机控制的便携式多功能乳腺治疗仪的研制基于C8051F020单片机的多生理信号检测仪基于单片机的电机运动控制系统设计Pico专用单片机核的可测性设计研究基于MCS-51单片机的热量计基于双单片机的智能遥测微型气象站MCS-51单片机构建机器人的实践研究基于单片机的轮轨力检测基于单片机的GPS定位仪的研究与实现基于单片机的电液伺服控制系统用于单片机系统的MMC卡文件系统研制基于单片机的时控和计数系统性能优化的研究基于单片机和CPLD的粗光栅位移测量系统研究单片机控制的后备式方波UPS提升高职学生单片机应用能力的探究基于单片机控制的自动低频减载装置研究基于单片机控制的水下焊接电源的研究基于单片机的多通道数据采集系统基于uPSD3234单片机的氚表面污染测量仪的研制基于单片机的红外测油仪的研究96系列单片机仿真器研究与设计基于单片机的单晶金刚石刀具刃磨设备的数控改造基于单片机的温度智能控制系统的设计与实现基于MSP430单片机的电梯门机控制器的研制基于单片机的气体测漏仪的研究基于三菱M16C/6N系列单片机的CAN/USB协议转换器基于单片机和DSP的变压器油色谱在线监测技术研究基于单片机的膛壁温度报警系统设计基于AVR单片机的低压无功补偿控制器的设计基于单片机船舶电力推进电机监测系统基于单片机网络的振动信号的采集系统基于单片机的大容量数据存储技术的应用研究基于单片机的叠图机研究与教学方法实践基于单片机嵌入式Web服务器技术的研究及实现基于AT89S52单片机的通用数据采集系统基于单片机的多道脉冲幅度分析仪研究机器人旋转电弧传感角焊缝跟踪单片机控制系统基于单片机的控制系统在PLC虚拟教学实验中的应用研究基于单片机系统的网络通信研究与应用基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究基于单片机的模糊控制器在工业电阻炉上的应用研究基于双单片机冲床数控系统的研究与开发基于Cygnal单片机的μC/OS-Ⅱ的研究基于单片机的一体化智能差示扫描量热仪系统研究基于TCP/IP协议的单片机与Internet互联的研究与实现变频调速液压电梯单片机控制器的研究基于单片机γ-免疫计数器自动换样功能的研究与实现基于单片机的倒立摆控制系统设计与实现单片机嵌入式以太网防盗报警系统基于51单片机的嵌入式Internet系统的设计与实现单片机监测系统在挤压机上的应用MSP430单片机在智能水表系统上的研究与应用基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信任机制下的供应链管理创新-洞察分析
- 温病方药药理研究综述-洞察分析
- 《混凝土工程计算题》课件
- 舆论引导政策分析-洞察分析
- 医院消防安全年终工作总结范文(7篇)
- 《工程事故分析及工》课件
- 《砌体施工亮点》课件
- 创新教育理念在小学科学教学中的实践
- 以互动为基础的家庭教育新模式探索
- 创新与责任并重打造未来办公室的新模式
- 机械设计基础(二)学习通超星期末考试答案章节答案2024年
- 高空抛物安全宣传教育课件
- (必会)军队文职(药学)近年考试真题题库(含答案解析)
- 医院后勤副院长年终工作总结
- 2024年医院物价管理制度范例(四篇)
- 浙江省宁波市鄞州区2023-2024学年九年级上学期期末考试科学试题
- 二进制基础知识课件
- 登高车高空作业施工方案
- 2024年新人教版四年级数学上册《第9单元第4课时 统计与数学广角 总复习》教学课件
- GB/T 15822.3-2024无损检测磁粉检测第3部分:设备
- 2023年全球自然灾害评估报告-全球灾害数据平台
评论
0/150
提交评论