圆轴的扭转课件_第1页
圆轴的扭转课件_第2页
圆轴的扭转课件_第3页
圆轴的扭转课件_第4页
圆轴的扭转课件_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章圆轴的扭转§5.1

圆轴扭转时所受外力的分析与计算扭转的概念工程实例当用改锥起螺钉时,在改锥柄处受到一个力偶m的作用,改锥下端则受到一个由螺钉给它的等值反向力偶的作用。这两个力偶所在的平面均与杆的轴线垂直,改锥的这种受力形式称为扭转。

改锥扭转的概念反应釜搅拌轴化工生产设备反应釜中的搅拌轴,轴的上端受到由减速机输出的转动力矩mC,下端搅拌桨上受到物料的阻力形成的阻力矩mA,当轴匀速转动时,这两个力偶矩大小相等、方向相反、都作用在与轴线垂直的平面内。搅拌轴的这种受力形式也是扭转。扭转的概念扭转的特点受力特点在垂直杆轴的横截面上作用着大小相等、方向相反的力偶。变形特点当构件受扭时,直杆上纵向直线变成螺旋线,各横截面绕轴线产生相对转动(错动),这种变形即被称为扭转变形。扭转角jB端面相对于A端面的转角。——纵向线的倾斜角。扭转的概念圆轴的扭转工程上,多数轴是等截面直轴。本章也只讨论圆截面直轴的扭转问题。以扭转变形为主要变形的构件通称为轴。圆轴扭转时的外力扭转时外力偶矩的计算P、nmAoFRωkwr/minN·m圆轴扭转时的外力关系式的物理意义当轴传递的功率一定时,n越大,m越小,即:转速越大,轴传递的扭转力矩越小;反之,转数越低则外力矩越大。

减速机:高速轴——细轴,低速轴——粗轴化工设备厂卷制钢板圆筒用的卷板机,工作时滚轴所需力矩很大,因为功率受到一定的限制,所以只能减低滚轴的转数n来增大力矩M。

圆轴扭转时的外力当轴的转速一定时,轴所传递的功率将随所受扭转力矩的增大而增大;增大机器转速,往往会使整个传动装置所传递的功率加大,并使电机过载,所以不能随意提高机器的转速;在选择减速机型号或确定电动机的额定功率时,应考虑整个操作周期中的最大阻力矩,以免烧坏电动机。扭转时横截面上的内力(扭矩)的计算实例:搅拌轴扭转时横截面上的内力(扭矩)的计算扭矩的概念扭矩是伴随圆轴的扭转变形而产生的,它的作用是抵抗外力矩对该截面的破坏,因此扭矩应该与截面一侧所受的外力矩平衡。在扭转时,圆轴横截面上必有内力偶矩存在,这个内力偶矩叫做扭矩,用MT表示。扭转时横截面上的内力(扭矩)的计算扭矩的计算法则扭矩的大小等于截面一侧所有外力偶矩的代数和。扭矩正、负的规定:按右手螺旋法则,大拇指的指向与截面的外法线方向一致为正;反之为负。扭转时横截面上的内力(扭矩)的计算用右手的四指沿着外力偶矩的旋转方向弯曲,如果大拇指的指向背离所讨论的截面,则认为该外力偶在该截面上所引起的扭矩为正,反之取负。例题分析例题1:如图所示的传动轴,转速为n=200r/min,由主动轮A输入功率PA=15kW,由从动轮B和C输出的功率分别为PB=9kW和PC=6kW。试求1-1截面和2-2截面的扭矩。例题分析解:首先求外力偶矩的大小:

mA

=9550PA/n=9550×(15/200)=716N·m

mB

=9550PB/n=9550×(9/200)=430N·m

mC

=9550PC/n=9550×(6/200)=287N·m2-2截面

MT2=mC

=287N·m

1-1截面MT1=mB+mC

=716N·m++287N·m716N·mxMT扭矩图例题分析2-2截面

MT2=mC

=287N·m

1-1截面MT1=-mB=-430N·m-+287N·m430N·mxMT扭矩图结论:当一根轴上作用有多个阻力偶矩时,驱动力偶矩施加的位置以及各阻力偶矩的位置安排,均会影响轴的最大扭矩。§5.3

圆轴在外力偶作用下的变形与内力角应变衡量剪切变形程度的角γ,称为角应变xyzτττ’τ’γΔΔxΔyΔz两截面间的相对错动量剪切虎克定理试验证明:在纯剪切应力状态下,当剪应力不超过材料的剪切比例极限τP时,τ与γ之间成正比关系,即:τ=G·γ,此为剪切虎克定律。G——材料的剪切弹性模量(MPa)反映材料抵抗剪切变形的能力。例如:钢的G=8·104MPa三个有关材料弹性的常数:E、μ、G,对于各向同性材料:oτPτγ变形分析实验现象变形前画在表面上的圆周线的形状、大小都没有改变,两相邻圆周线之间的距离也没有改变;只是n-n、m-m都绕各自形心产生了相对转动。表面上纵向线变形后仍为直线,只是都倾斜了同一角度γ

,原来的矩形变成平行四边形。变形分析各横截面的大小、形状在变形前后都没有变化,仍是平面,只是相对地转过了一个角度,各横截面间的距离也不改变,从而可以说明轴向纤维没有拉、压变形,所以,在横截面上没有正应力产生;

圆轴各横截面在变形后相互错动,矩形变为平行四边形,这正是前面讨论过的剪切变形,因此,在横截面上应有剪应力;变形后,横截面上的半径仍保持为直线,而剪切变形是沿着轴的圆周切线方向发生的。所以剪应力的方向也是沿着轴的圆周的切线方向,与半径互相垂直。推理结果剪应变在横截面上的分布规律

表示圆轴在n-n截面处的扭转变形程度b点的角应变:结论:横截面上各点的剪应变(角应变)与该点到圆心的距离成正比,即剪应变随半径按线性规律变化。剪应力的分布当剪应力不超过材料剪切比例极限时,由剪切虎克定律τ=Gγ得横截面剪应力分布规律:结论:剪应力沿横截面的半径方向按线性规律分布;同一半径ρ的圆周上各点处的剪应力τ

ρ相同,且τ

ρ的方向垂直于半径;截面中心处τ

=0,边缘处τ

最大剪应力的分布剪应力的计算(静力平衡关系)轴的转速n和功率P外力偶矩m截面上的扭矩M

ρ?剪应力的计算(静力平衡关系)横截面上的扭矩M

T与τ

ρ的关系oτ

ρτ

maxM

TρdAτ

ρ·dA横截面上的扭矩M

T与的关系Iρ剪应力的计算(静力平衡关系)极惯性矩,与截面尺寸有关的几何量单位:m4或mm4扭转剪应力的计算式横截面上距轴心为ρ处的扭转剪应力τ

ρ为:剪应力的计算(静力平衡关系)最大扭转剪应力τ

max

出现在圆轴横截面的外圆周上,其值为:Wρ抗扭截面模量,与截面尺寸有关的几何量单位:m3或mm3极惯性矩Iρ和抗扭截面模量Wρ的计算极惯性矩Iρ与抗扭截面模量Wρ是与截面尺寸和形状有关的几何量,可以按下述方法计算。

oRrdrD

实心圆轴如图,可以取一圆环形的微面积dA,则dA=2p·r·dr,因此

极惯性矩Iρ和抗扭截面模量Wρ的计算外径为D,内径为d的空心圆轴例题分析例1.设搅拌轴的转速为n=50r/min,搅拌功率为P=2kW,搅拌轴的直径d=40mm,求轴内的最大应力。

解:轴的外力偶矩为抗扭截面模量为杆在扭转时的最大剪应力为

例题分析例2.

有一实心圆轴,直径为d=81mm;另一空心轴的内径为d=62mm,外径为D=102mm,这两根轴的截面积相同,等于51.5cm2。试比较这两根轴的抗扭截面模量。

解:实心轴空心轴结论:在材料相同、截面积相等的情况下,空心轴比实心轴的抗扭能力强,能够承受较大的外力矩。在相同的外力矩情况下,选用空心轴要比实心轴省材料。扭转角的计算轴受扭转作用时所产生的变形,是用两横截面之间的相对扭转角j表示的,如图:

若在长为l的一段圆轴内,各横截面上的扭矩相同,则这段轴两端的相对扭转角为:圆轴的抗扭刚度,反映圆轴抵抗扭转变形的能力扭转角的计算为了便于比较,工程上一般都用单位轴长上的扭转角q表示扭转变形的大小:N·mm4Pa工程实际中规定的许用扭转角[q]是以°/m为单位的,因此可将扭转角改为:

§5.4

圆轴扭转的强度条件与刚度条件圆轴扭转时的强度条件为保证轴正常安全工作,必须使轴的危险截面上的最大剪应力不超过材料的扭转许用剪应力[τ],即轴扭转的强度条件为:在确定轴的危险截面时,既要考虑扭矩的大小,也要注意轴的薄弱截面。圆轴扭转时的强度条件[τ]——扭转许用剪应力,其确定方法:1)根据扭转试验得到:τs(塑性材料),τb(脆性材料),除以适当的安全系数:2)在静载荷作用下:[τ]与[σ]之间的关系:3)对传动轴,承受动载荷,发生弯曲和扭转的组合变形,因此许用剪应力应低于静载荷下的[τ],具体根据有关规定选取。圆轴扭转时的刚度条件圆轴受扭转时,除了考虑强度条件外,有时还要满足刚度条件。例如机床的主轴,若扭转变形太大,就会引起剧烈的振动,影响加工工件的质量。因此还需对轴的扭转变形有所限制。[q]的规定:精密机械的轴[q]=(0.15º~0.5º)/m

一般传动轴[q]=(0.5º~1.0º)/m

较低精度的轴[q]=(2º~4º)/m圆轴强度和刚度条件的应用校核轴的强度、刚度。(已知载荷和轴的尺寸)设计轴的尺寸大小。(已知载荷)计算许可载荷。(已知轴尺寸)一般按计算d,用校核刚度条件。一般按计算载荷,用校核刚度条件。例题分析例3.

某搅拌反应器的搅拌轴传递的功率P=5kW,空心圆轴的材料为45号钢,a=d/D=0.8,转速n=60r/min,[t]=40MPa,[q]=0.5°/m,G=8.1×104=MPa,试计算轴的内、外径尺寸d与D各为多少?解:(1)计算外力矩轴的横截面上的扭矩例题分析(2)由强度条件得:(3)由刚度条件得:例题分析故选D=56mm,d=0.8D=44.8mm。如用无缝钢管作轴,则按管径规格,可选D=60mm,d=46mm,即用f60×7的无缝钢管。材料力学部分小结

材料力学的主要任务是解决构件的强度、刚度和稳定问题。通过计算,合理的选择材料以及截面的形状和尺寸,保证构件的安全和经济。基本变形小结对一个实际的受力杆件,先要进行受力分析:根据外力的特点,判断它产生哪种基本变形。五种基本变形又可归纳为两类:拉压弯曲是尺寸变化的线应变;剪切和扭转是形状变化的角应变。材料力学部分小结通常根据已知的载荷求得支座反力后,才能用截面法求得杆件横截面上的内力;轴力沿杆轴线方向、剪力垂直于杆轴线、扭矩作用面垂直于轴线、弯矩作用在轴线平面内。通过观察实验现象,作出杆件横截面的平面假设,找到变形规律后,结合虎克定律,确定横截面上应力的分布规律。有均匀分布和线性分布两种。

材料力学部分小结强度计算是材料力学的主要问题之一,应用强度条件可以解决杆件的三类强度问题,校核强度、设计截面、确定许可载荷。强度条件可归纳为:解决杆件扭转或弯曲强度问题时,必须先求出各截面的扭矩值和弯矩值,以确定危险截面及其最大扭矩或最大弯矩。计算铆钉类的剪切强度问题时,注意区别单剪和双剪。

材料力学部分小结截面几何量杆件在拉压和剪切时,截面对强度和刚度的影响是以面积A来反映的;杆件在弯曲和扭转时,截面对强度和刚度的影响则是以抗弯截面模量Wz、抗扭截面模量Wr、轴惯性矩Jz、极惯性矩Jr来反映的。这些都是截面的几何量的性质,决定于截面的形状、尺寸和中性轴的位置。空心轴比实心轴经济合理;工字钢截面比矩形截面经济合理;直立的矩形截面比正方形截面经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论