音响放大器课程设计说明书_第1页
音响放大器课程设计说明书_第2页
音响放大器课程设计说明书_第3页
音响放大器课程设计说明书_第4页
音响放大器课程设计说明书_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北工业大学课程设计说明书

-16-课程设计说明书设计题目音响放大器设计课程模拟电子技术学院电气与电子工程学院班级14级电信中英学号1410211120姓名陈默指导教师贺章擎二〇一六年一月二日目录课程任务和要求······································(3)1.1题目············································(3)1.2设计目的········································(3)1.3课程设计内容····································(3)绪论················································(4)2.1音响放大器的应用背景····························(4)2.2历史发展·········································(4)2.3最新技术·········································(5)电路的设计方案······································(7)3.1实验电路的工作原理·······························(7)3.2音响放大器的基本组成·····························(7)3.3音响放大器的组成框架·····························(7)核心元器件的介绍····································(8)LM324的介绍····································(8)LM386的介绍····································(8)单元电路的设计及分析································(9)5.1话音放大器·······································(9)5.2混合前置放大器···································(10)5.3音调控制器·······································(11)5.4功率放大器·······································(11)6.调试·················································(12)7.总结·················································(13)参考文献············································(15)1.课程设计任务及要求1.1题目音响放大器设计1.2课程设计目的本课程设计是专业课学习过程中一个非常重要的实践性环节,为综合应用所学的专业知识提供了一次很好的实践机会。通过课程设计培养学生现状调研与分析能力、问题发现与解决能力、书面表达与口头答辩能力、个人分工与团队合作能力。1.3课程设计任务(内容)(1)设计内容设计一种具有音调控制、卡拉OK伴唱的音响放大器。包括话筒放大、混合前置放大、音调控制和功率放大等几个模块。(2)设计技术指标额定功率:Po≤1W功放增益:100频率响应:40Hz~10KHz音调控制:100Hz和10KHz处有±10dB调节范围输入阻抗:Ri≥20Ω负载阻抗:RL=8Ω2.绪论2.1音响放大器的应用背景进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发展趋势。从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不多人人具备的便携式电子设备。陆续将要普及的还有便携式电视机,便携式DVD等等。所有这些便携式的电子设备的一个共同点,就是都有音频输出,也就是都需要有一个音频放大器;另一个特点就是它们都是电池供电的。都希望能够有较长的使用寿命。就是在这种需求的背景下,D类放大器被开发出来了。它的最大特点就是它能够在保持最低的失真情况下得到最高的效率。效率。2.2历史发展音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。由于电子管放大器音色甜美、圆润,至今仍为发烧友所偏爱。60年代晶体管的出现,使广大音响爱好者进入了一个更为广阔的音响天地。晶体管放大器具有细腻动人的音色、较低的失真、较宽的频响及动态范围等特点。在60年代初,美国首先推出音响技术中的新成员--集成电路,到了70年代初,集成电路以其质优价廉、体积小、功能多等特点,逐步被音响界所认识。发展至今,厚膜音响集成电路、运算放大集成电路被广泛用于音响电路。70年代的中期,日本生产出第一只场效应功率管。由于场效应功率管同时具有电子管纯厚、甜美的音色,以及动态范围达90dB、THD<0.01%(100kHz时)的特点,很快在音响界流行。现今的许多放大器中都采用了场效应管作为末级输出。音响技术的发展经历了电子管、晶体管、场效应管的历史时期,在不同的历史时期都各有其特点。预计音响技术今后的发展主流为数字音响技术。2.3最新技术近年来,一种称为“数码功放”的器件悄悄来到了Hi—Fi领域。有人称它为音频放大器的革命,希望给几成死水一潭的音响业带来生机。所谓“数码功放”,应该是让音频信号以纯数码的形式从输入开始保留到喇叭放音前的最后一级。基本电路就是D类放大器。D类放大器D类放大器实际上是一种开关放大器,其开关频率高达100kHz以上。输入端是直接从数码信号源如CD唱机、DVD影碟机、DVDAudio或SACD光碟机以及DTV数码电视等输入的数码音频信号,而不是经过ADC模数转换或DAC数模转换处理的音乐模拟信号。典型的实现过程如下:先由振荡器调制直流电源产生一个基准方波信号,其工作频率可跟随输入信号变化,设定为几十到几百千赫;脉冲宽度则随输入信号的幅度大小而变化。还可以设置一个锯齿波信号产生器,其频率为基准方波信号的一倍,并与之同步。锯齿波信号用来同需要放大的、不断变化的输入信号作比较。当锯齿波同输入信号发生差异时,便产生与其瞬时振幅一致的相移信号。再用一个逻辑上由基准信号和相移信号控制的开关电路输出一个极性经过选择的脉冲宽度调制信号(PWM信号)。PWM信号经晶体管放大和高速整流,再通过低通滤波器滤除高频成分、平滑处理后回复为音频信号馈送扬声器放音。这种电路最大优点是功耗极小。因为它通常采用耐二次击穿、开关转换效率极高的场效应晶体管,运行中几乎没有损耗,效率可达90%以上(普通A类或AB类放大器的效率最大也只不过50%)。高效意味着耗电小、散热要求低,从而导致集成电路化的大批量生产。其另一个优点是失真小。我们都知道,为了增加频响宽度、防止信号饱和畸变,几乎所有放大器都需要使用反馈电路,可是反馈产生的延时效应却对原音重现带来失真。由于数码放大器转换时间极快,延时效应微乎其微,产生的误差只有传统模拟放大器的六分之一,所以对输出控制得更好,尤其是瞬态反应更为精确真实,特别适用于爆发力要求较高的重低音功放。应该指出,早期的数码功放仍用模拟电路来处理数字信号,虽然效率提高,但高保真效果较差并有射频干扰。真正的数码功放应该采用数字逻辑电路,以先进的数字处理技术来补偿晶体管高速导通、截止时引起的失真。3.电路的设计方案3.1实验电路的工作原理语音信号由话筒输出后,进入语音放大器放大并传入混合前置放大器进行放大。放大后的信号进入音调控制器,然后进入功率放大器进行功率放大后,由扬声器输出声音。3.2音响放大器的基本组成语音放大器:无失真地放大语言信号。混合前置放大器:将录音机输出的音乐信号与语音放大器放大后的信号混合放大。音调控制器:音调控制器要求只对低音频和高音频的增益进行提升或者衰减,中音频的增益保持为0dB不变。功率放大器:给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能小,效率尽可能高。3.3音响放大器的组成框架4.核心元器件的介绍4.1LM324的介绍LM324是四运放集成电路,它采用14脚双列直插塑料封装。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。应用领域包括传感器放大器,直流增益模块和所有传统的运算放大器可以更容易地在单电源系统中实现的电路。LM324引脚图4.2LM386的介绍LM386是专为低损耗电源所设计的功率放大器集成电路。它的内建增益为20,透过pin1和pin8脚位间电容的搭配,增益最高可达200。LM386可使用电池为供应电源,输入电压范围可由4V~12V,无作动时仅消耗4mA电流,且失真低。5.单元电路的设计及分析5.1话音放大器话音放大器的主要作用是将话筒输入的信号不失真的放大,由于话筒的输出信号一般只有5mv,而输出阻抗达到20k,所以其输入阻抗应远大于话筒的输出阻抗。具体设计见仿真图5.1.1。图5.1.1话音放大电路图5.1.1话音放大级增益为8.5与20K话筒配接作为话音放大器电路,其交流放大倍数Av1=1+R12/R11=8.5(18.5dB)高阻话筒要求输入内阻很大,采用同相放大电路R12取标称值为75KΩ,R11标称值为10KΩ,电阻R13、R14作用是分流和提供直流偏置电压R13、R14取标称值为10KΩ。电容C11、C13作用是去直流,C11去标称值为10uF,C13取标称值为1uF,电容C12在电路中起耦合作用,C12取标称值为10uF。考虑到电路接线出错直流电压被放大电压为38.5V,C12两端电压达到38.5V,电容C12采用耐压值为50V,C11、C13两端的电压为4.5V,耐压值16V和50V均满足要求,C11采用耐压值为16V,C13采用耐压值为50V。5.2混合前置放大器图5.2.1混合前置放大电路混合前置放大器的电路由运放组成,是一个反相加法器电路,话放级的输出作为混放级的输入,录音机的输入为Vi2,输出电压Vo2的表达式为:Vo2=-[(R22/R21)Vo1+(R22/R23)Vi2]第一级为第二级提供输入信号Vo1=42mV,混合前置放大倍数为3,可以达到输出125mV的设计要求。输入信号为100mV,信号只录音机接口输入放大倍数为1,录音机输入信号为100mV,不放大可以达到驱动下级正常工作的要求。取R23=R22=30KΩ,R21=10KΩ。电阻R23、R24作用是分流和提供直流偏置电压,R23、R24取标称值为10KΩ。C21、C22、C24在电路中起耦合作用,C23在电路中起去直流作用。、C21、C22、C23、C24都取标称值为10uF,如果线路接错,是直流也被放大,直流电压达到13.5V,C21、C23电容取耐压值为16V。C22、C24电容取耐压值为50V.5.3音调控制器图5.3.1音调控制器电路5.4功率放大器功率放大器(简称功放)的作用是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。5.4.1功率放大器电路由于Av=R11/Rf,R11=20kΩ,Av=100,故取Rf=200Ω6.调试6.1静态工作点测试接上电源(次级为12伏),不带负载情况下接通电源,按下电路板上电源开关,测试滤波电容两端输出电压应为14v左右。若出现异常应该立即断电。6.2最大输出功率测试将8Ω负载接入功率输出端。再将信号源调至频率f=1000hz,输出电压为1V,接到音频放大器的声道输入端。将音调调节电位器调到最大。功率输出端接上示波器、毫伏表。调节音量电位器,使输出信号失真度THD=3%时,测出功率放大器的输出电压Vo的值,由公式P=Vo2/16计算放大器的最大输出功率。6.3频率特性测试调节1000hz输入信号幅度(或调音量电位器),使输出信号为1V。测出电路输入信号的大小Vi的值。调节输入信号的频率,保持输入信号Vi的大小不变,测量输出信号的大小。找出上下限频率FL和FH,求出通频带BW=FH-FL。6.4音乐试听在功率调试正常后,接上音乐信号源,试听音量和音调电路对音乐的调节效果。调节声道的音调电位器R20,能够听到高提升和低音调的声音有明显的衰减。7.总结这次的课程设计与我们的专业有着密切的联系,且是动手实践方面的指示。正所谓“纸上谈兵终觉浅,觉知此事要躬行。”学习任何知识,仅从理论上去求知,而不去实践、探索是不够的,所以在本学期电路刚学完之际,进行一次《模拟电子》课程设计是很及时、很必要的。这样不仅能加深我们对电子电路的认识,而且还及时、真正的做到了学以致用。历时这一个星期的课程设计已画上圆满的句号。回头看看,不禁感慨众多,课程设计这么复杂,仅仅是一个音响放大器就涉及很多的电路知识。高科技生活离不开电子技术,是它让我们的身边这一切如此快捷方便,并且通过了这次模拟电子电路课程设计,我才了解到我们所学的知识只是原来是如此地贴近我们,它们就在我们身边,在我们身边或大或小的地方,而并不是我原先所想象的那样遥不可及,总是好像在那种大房子里面的大器才会用到这些东西,感觉那些是科学家做的事情,对于我们来说是天方夜谭。而如今,我才知道了这一切。这次课程设计是我深刻认识到学好一门知识很难,做好一件事也很难,我们要想做好一件设计,一个产品,都离不开我们所学习的知识,一次,经历这次课程设计我认为今后每个人都应该有更大动力学习本专业的知识,将我所学的知识来赋予实践。参考文献[1]康华光主编电子技术基础•模拟部分[M].第四版,北京:高等教育出版社,2000[2]王愉节,窦勤耘编电子技术实验指导[M].第一版,贵阳:贵州科技出版社,2004[3]彭军主编实用电子技术[M].第一版,北京:科学出版社,2006[4]郝国法,梁柏华编电子技术实验[M].第一版,北京:冶金工业出版社,2007[5]范秀香,模拟电子技术实验指导书[M].第一版,北京:中国电力出版社,2015基于C8051F单片机直流电动机反馈控制系统的设计与研究基于单片机的嵌入式Web服务器的研究MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究基于模糊控制的电阻钎焊单片机温度控制系统的研制基于MCS-51系列单片机的通用控制模块的研究基于单片机实现的供暖系统最佳启停自校正(STR)调节器单片机控制的二级倒立摆系统的研究基于增强型51系列单片机的TCP/IP协议栈的实现基于单片机的蓄电池自动监测系统基于32位嵌入式单片机系统的图像采集与处理技术的研究基于单片机的作物营养诊断专家系统的研究基于单片机的交流伺服电机运动控制系统研究与开发基于单片机的泵管内壁硬度测试仪的研制基于单片机的自动找平控制系统研究基于C8051F040单片机的嵌入式系统开发基于单片机的液压动力系统状态监测仪开发模糊Smith智能控制方法的研究及其单片机实现一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制基于双单片机冲床数控系统的研究基于CYGNAL单片机的在线间歇式浊度仪的研制基于单片机的喷油泵试验台控制器的研制基于单片机的软起动器的研究和设计基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究基于单片机的机电产品控制系统开发基于PIC单片机的智能手机充电器基于单片机的实时内核设计及其应用研究基于单片机的远程抄表系统的设计与研究基于单片机的烟气二氧化硫浓度检测仪的研制基于微型光谱仪的单片机系统单片机系统软件构件开发的技术研究基于单片机的液体点滴速度自动检测仪的研制基于单片机系统的多功能温度测量仪的研制基于PIC单片机的电能采集终端的设计和应用基于单片机的光纤光栅解调仪的研制气压式线性摩擦焊机单片机控制系统的研制基于单片机的数字磁通门传感器基于单片机的旋转变压器-数字转换器的研究基于单片机的光纤Bragg光栅解调系统的研究单片机控制的便携式多功能乳腺治疗仪的研制基于C8051F020单片机的多生理信号检测仪基于单片机的电机运动控制系统设计Pico专用单片机核的可测性设计研究基于MCS-51单片机的热量计基于双单片机的智能遥测微型气象站MCS-51单片机构建机器人的实践研究基于单片机的轮轨力检测基于单片机的GPS定位仪的研究与实现基于单片机的电液伺服控制系统用于单片机系统的MMC卡文件系统研制基于单片机的时控和计数系统性能优化的研究基于单片机和CPLD的粗光栅位移测量系统研究单片机控制的后备式方波UPS提升高职学生单片机应用能力的探究基于单片机控制的自动低频减载装置研究基于单片机控制的水下焊接电源的研究基于单片机的多通道数据采集系统基于uPSD3234单片机的氚表面污染测量仪的研制基于单片机的红外测油仪的研究96系列单片机仿真器研究与设计基于单片机的单晶金刚石刀具刃磨设备的数控改造基于单片机的温度智能控制系统的设计与实现基于MSP430单片机的电梯门机控制器的研制基于单片机的气体测漏仪的研究基于三菱M16C/6N系列单片机的CAN/USB协议转换器基于单片机和DSP的变压器油色谱在线监测技术研究基于单片机的膛壁温度报警系统设计基于AVR单片机的低压无功补偿控制器的设计基于单片机船舶电力推进电机监测系统基于单片机网络的振动信号的采集系统基于单片机的大容量数据存储技术的应用研究基于单片机的叠图机研究与教学方法实践基于单片机嵌入式Web服务器技术的研究及实现基于AT89S52单片机的通用数据采集系统基于单片机的多道脉冲幅度分析仪研究机器人旋转电弧传感角焊缝跟踪单片机控制系统基于单片机的控制系统在PLC虚拟教学实验中的应用研究基于单片机系统的网络通信研究与应用基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究基于单片机的模糊控制器在工业电阻炉上的应用研究基于双单片机冲床数控系统的研究与开发基于Cygnal单片机的μC/OS-Ⅱ的研究基于单片机的一体化智能差示扫描量热仪系统研究基于TCP/IP协议的单片机与Internet互联的研究与实现变频调速液压电梯单片机控制器的研究基于单片机γ-免疫计数器自动换样功能的研究与实现基于单片机的倒立摆控制系统设计与实现单片机嵌入式以太网防盗报警系统基于51单片机的嵌入式Internet系统的设计与实现单片机监测系统在挤压机上的应用MSP430单片机在智能水表系统上的研究与应用基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用单片机在高楼恒压供水系统中的应用基于ATmega16单片机的流量控制器的开发基于MSP430单片机的远程抄表系统及智能网络水表的设计基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计基于单片机的氨分解率检测系统的研究与开发HYPERLINK"/detail

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论