版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、初一数学几何模型部分解答题压轴题精选(难)1.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。(直接写出结论)问题情境2如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足____关系。(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;(2)如图5中,∠ABM=13∠ABF,∠CDM=1(3)若∠ABM=1n∠ABF,∠CDM=1【答案】(1)解:根据问题情境2,可得出∠BFD=∠AEF+∠CDF∵,∠ABE与∠CDE两个角的角平分线相交于点F
∴∠AEF=∠FBE,∠CDF=∠FDE∴∠FBE+∠FDE=∠BFD∵∠E+∠BFD+∠FBE+∠FDE=360°∴80°+∠BFD+∠BFD=360°∴∠BFD=140°(2)结论为:6∠M+∠E=360°证明:∵∠ABM=13∠ABF,∠CDM=1∴∠ABF=3∠ABM,∠CDF=3∠CDM∵∠ABE与∠CDE两个角的角平分线相交于点F
∴∠ABE=6∠ABM,∠CDE=6∠CDM∵∠ABE+∠CDE+∠E=360°∴6(∠ABM+∠CDM)+∠E=360°∵∠M=∠ABM+∠CDM∴6∠M+∠E=360°(3)证明:根据(2)的结论可知2n∠ABM+2n∠CDM+∠E=360°2n(∠ABM+∠CDME)+∠E=360°∵∠M=∠ABM+∠CDM∴2n∠M+m°=360°∴∠M=【解析】问题情境1:
图1中∠B,∠P,∠D之间关系是:∠P+∠B+∠D=360°,问题情境2:图3中∠B,∠P,∠D之间关系是:∠P=∠B+∠D;【分析】问题情境1和2
过点P作EP∥AB,利用平行线的性质,可证得结论。(1)利用问题情境2的结论,可得出∠BFD=∠AEF+∠CDF,再根据角平分线的定义得出∠AEF=∠FBE,∠CDF=∠FDE,再证明∠E+∠BFD+∠FBE+∠FDE=360°,就可建立方程80°+∠BFD+∠BFD=360°,解方程求出∠BFD的度数即可。(2)根据已知可得出∠ABF=3∠ABM,∠CDF=3∠CDM,再根据角平分线的定义得出,∠ABE=6∠ABM,∠CDE=6∠CDM,然后根据问题情境1的结论∠ABE+∠CDE+∠E=360°,可推出6(∠ABM+∠CDM)+∠E=360°,变形即可证得结论。(3)根据已知得出2n∠ABM+2n∠CDM+∠E=360°,再根据∠M=∠ABM+∠CDM,代入变形即可得出结论。2.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【答案】(1)解:∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC=12∠AOC=60°,∠CON=1∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°(2)解:∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC=12∠AOC=12α+15°,∠CON=∵∠MON=∠MOC﹣∠CON,∴∠MON=12α+15°﹣15°=1(3)解:∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC=12∠AOC=12β+45°,∠CON=12∵∠MON=∠MOC﹣∠CON,∴∠MON=12β+45°﹣1(4)解:根据(1)、(2)、(3)可知∠MON=12【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC=12α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC=12β+15°,∠CON=3.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为________
cm.【答案】(1)16;8(2)解:设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x=83∴CO=8(3)48【解析】【解答】解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t=165当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t=165②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.4.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN分别平分∠ACP和∠PCD,分别交射线AB于点M,N.(1)求∠MCN的度数.(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)解:∵AB∥CD,∴∠ACD=180°﹣∠A=140°,又∵CM,CN分别平分∠ACP和∠PCD,∴∠MCN=∠MCP+∠NCP=12(∠ACP+∠PCD)=1故答案为:70°.(2)解:∵AB∥CD,∴∠AMC=∠MCD,又∵∠AMC=∠ACN,∴∠MCD=∠ACN,∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,∴∠ACM=∠MCP=∠NCP=∠NCD,∴∠ACM=14故答案为:35°.(3)解:不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD=12∠PCD=1【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM=∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.5.已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意点.BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.(1)探究:求∠C的度数.(2)发现:当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.(3)应用:如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.【答案】(1)解:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+90°,∴∠ABD=∠BAC+45°,又∵∠ABD=∠BAC+∠C,∴∠C=45°(2)解:不变.理由如下:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+∠AOB,∴∠ABD=∠BAC+12又∵∠ABD=∠BAC+∠C,∴∠C=12(3)解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°﹣(∠A+∠B+∠E)=50°,∴∠P=∠FCD﹣∠CDP=12=12∠G=1【解析】【分析】(1)(2)根据三角形外角的性质和角平分线的性质进行解答;(3)延长ED,BC相交于点G,根据四边形形内角和为360°求得∠G的度数,再根据三角形外角的性质和角平分线的性质求∠P的度数.6.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。设∠OCP的度数为x°,∠CDP的度数为y°。小明对x与y之间满足的等量关系进行了探究,下面是小明的探究过程,请补充完整;(1)x的取值范围是________;(2)按照下表中x的值进行取点、画图、计算,分别得到了y与x的几组对应值,补全表格;(3)在平面直角坐标系xOy中,①描出表中各组数值所对应的点(x,y);②描出当x=120°时,y的值;(4)若∠AOB=a°,题目中的其它条件不变,用含a、x的代数式表示y为________。【答案】(1)40°<x<140°(2)解:∵∠DPB=∠AOB+∠CDP=40°+y°,∠DPB=12∴40°+y°=12(40°+x°),即y=1x=60时,y=12x-20=1x=70时,y=12x-20=1x=80时,y=12x-20=1x=90时,y=12x-20=1补全表格如下:;(3)解:①②如图:
x=120时,y=12x-20=1(4)y=12【解析】【解答】解:(1)∵∠CPB是△COP的外角,∴∠CPB=40°+x°,∠CPB一定小于180°,即40°+x°<180°,x<140°,∵PD平分∠CPB,∴∠DPB=12∠CPB=1∵当∠DPB=40°时,DP∥OA,即∠CPB的角平分线与OA无交点,所以∠DPB一定大于40°,即12∴x的取值范围是40°<x<140°;(4)∵∠DPB=∠AOB+∠CDP,∠AOB=a°,∠CDP的度数为y°,∴∠DPB=a°+y°,∵∠CPB=∠AOB+∠OCP,∠AOB=a°,∠OCP的度数为x°,∴∠CPB=a°+x°,∵PD平分∠CPB,∴∠DPB=12∠CPB=12(∴a°+y°=12(a°+x°),即y=1【分析】(1)根据角平分线和三角形外角的性质,可得∠CPB=40°+x°,∠DPB=12(2)根据角平分线和三角形外角的性质列出y与x的关系式,分别计算求值即可;(3)在平面直角坐标系xOy中描出各点即可;(4)根据角平分线和三角形外角的性质即可求解.7.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF(1)证明:BD⊥BC;(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD的度数:(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF∴∠ABC=12∠ABE,∠ABD=1∴∠ABC+∠ABD=12(∠ABE+∠ABF)=1∴BD⊥BC(2)解:∵CD∥EFBD平分∠ABF∴∠ADP=∠DBF=12又AP平分∠DAG,∠BAG=50°∴∠DAP=12∴∠APD=180°-∠DAP-∠ADP=180°-12∠DAG-1=180°-12(∠DAB-∠BAG)-1=180°-12∠DAB+12×50°-=180°-12=180°-12=115°(3)45°【解析】【解答】(3)解:如图,∵AQ∥BC∴∠1=∠4,∠2+∠3+∠4=180°,∵BC平分∠ABE,∴∠1=∠2=∠4,∴12又∵CD∥EF,AN⊥EF,AP平分∠BAN∴∠PAN=12∴∠PAQ=∠PAN+∠NAQ=12=45°-12=135°-(12=135°-90°=45°.【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF=12∠ABF,∠DAB+∠ABF=180°,∠DAP=12∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即12∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN=18.直线MN与直线PQ相交于O,∠POM=60°,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,∠BAO=70°,已知AE、BE分别是∠BAO和∠ABO角的平分线,试求出∠AEB的度数.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)在(2)的条件下,在△CDE中,如果有一个角是另一个角的2倍,请直接写出∠DCE的度数.【答案】(1)解:∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠EAB=12∠OAB=35°,∠EBA=1∴∠AEB=180°-35°-25°=120°(2)解:不发生变化,理由如下:如图,延长BC、AD交于点F,∵点D、C分别是∠PAB和∠ABM的角平分线上的两点,∴∠FAB=12∠PAB=12(180°-∠OAB),∠FBA=12∴∠FAB+∠FBA=12(180°-∠OAB)+12(180°-∠OBA)=12∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°-12同理可求∠CED=90°-12(3)∠DCE的度数40°或80°【解析】【解答】解:(3)①当∠DCE=2∠E时,显然不符合题意;②当∠DCE=2∠CDE时,∠DCE==80°;③当∠DCE=12∠CDE时,∠DCE==40°,综上可知,∠DCE的度数40°或80°.【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根据AE、BE分别是∠BAO和∠ABO的角平分线,可得∠EAB和∠EBA的值,在△EAB中,根据三角形内角和即可得出∠AEB的大小;(2)不发生变化,延长BC、AD交于点F,根据角平分线的定义以及三角形内角和可得∠F=90°-12∠AOB,∠CED=90°-19.如图1,已知∠MON=60°,A、B两点同时从点O出发,点A以每秒x个单位长度沿射线ON匀速运动,点B以每秒y个单位长度沿射线OM匀速运动.(1)若运动1s时,点A运动的路程比点B运动路程的2倍还多1个单位长度,运动3s时,点A、点B的运动路程之和为12个单位长度,则x=________,y=________;(2)如图2,点C为△ABO三条内角平分线交点,连接BC、AC,在点A、B的运动过程中,∠ACB的度数是否发生变化?若不发生变化,求其值;若发生变化,请说明理由;(3)如图3,在(2)的条件下,连接OC并延长,与∠ABM的角平分线交于点P,与AB交于点Q.①试说明∠PBQ=∠ACQ;②在△BCP中,如果有一个角是另一个角的2倍,请写出∠BAO的度数.【答案】(1)3;1(2)解:的度数不发生变化,其值求解如下:由三角形的内角和定理得点C为三条内角平分线交点,即AC平分,BC平分由三角形的内角和定理得(3)解:①由三角形的外角性质得:点C为三条内角平分线交点,即AC平分,OC平分又是的角平分线;②是的角平分线,BC平分由三角形的外角性质得:则在中,如果有一个角是另一个角的2倍,那么一定是.【解析】【解答】(1)由题意得:化简得解得{故答案为:3,1;【分析】(1)根据“路程=速度脳时间”建立一个关于x、y的二元一次方程组,求解即可得;(2)先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据三角形的内角和定理即可得;(3)①先根据三角形的外角性质可得,再根据角平行线的定义即可得;②先根据角平分线的定义、平角的定义得出,再根据三角形的外角性质得出,从而得出,然后根据直角三角形的性质得出,最后根据角的和差、角平分线的定义即可得.10.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.【答案】(1)证明:如图1,过点E作EK//∴∵AB//∴EK//∴∴;(2)解:∵BF、EG分别平分、∴设∵BH//∴∴由(1)知,即∴;(3)解:∵CN、BF分别平分、∴设由(1)知:即如图3,过M作PQ//则∴∴∴.【解析】【分析】(1)过点E作EK//AB,由平行线的性质得出,进而得出答案;(2)设,由平行线的性质得出,由(1)知,即可得出答案;(3)设,由(1)知,过M作PQ//AB//CD,由平行线的性质得出,求出,即可得出答案.11.如图,直线x和直线y互相垂直,垂足为O,直线x鈯?mbrimbrimbrimbriAB于点B,E是线段AB上一定点,D为线段OB上的一动点(点D不与点O、B重合),直y于点C(1)当,则________°;(2)当时,请判断CD与AC的位置关系,并说明理由;(3)若、的角平分线的交点为P,当点D在线段OB上运动时,问的大小是否会发生变化?若不变,求出的大小,并说明理由;若变化,求其变化范围.【答案】(1)40(2)解:由(1)可得:∠CDO=∠BED,∵,∴∠A=∠BED,∴AC∥DE,∵CD⊥DE,∴AC⊥CD;(3)解:∠P的大小不会发生变化,理由如下:如图,连接PD并延长,∵CP平分∠OCD,PE平分∠BED,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度牛奶饮料健康理念推广及产品研发合同2篇
- 课题申报书:协同治理视阈下资源型地区生态环境修复制度研究
- 二零二五年度体育场馆车库租赁及赛事保障协议2篇
- 2024年度仿古地板砖设计与生产合作协议3篇
- 二零二五年度五星级酒店股权转让全面合作协议3篇
- 活动策划师成就业新宠范文
- 2025年度版权转让合同条款及标的解析2篇
- 2024年铝锭交易双方的权利与义务合同
- 二零二五年度公司企业社会责任履行与报告编制合同3篇
- 2025版酒店健身房装修设计及健身设备采购合同3篇
- 手机短视频拍摄与剪辑(微课版) 课件 第7章 视频摄像
- 反诉状(业主反诉物业)(供参考)
- GH/T 1451-2024调配蜂蜜水
- 送温暖活动困难职工帮扶申请表
- 小学六年级英语教学小助手的培养研究
- 2024年人教版初二物理上册期末考试卷(附答案)
- 山东省临沂市河东区2023-2024学年五年级下学期期末综合(道德与法治+科学)检测试题
- 广安市岳池县2022-2023学年七年级上学期期末道德与法治试题
- 产品进入医院的程序及方法
- 司机劳务合同
- 搭乘私家车免责协议书
评论
0/150
提交评论