专题02 圆锥曲线中的面积问题(原卷版)_第1页
专题02 圆锥曲线中的面积问题(原卷版)_第2页
专题02 圆锥曲线中的面积问题(原卷版)_第3页
专题02 圆锥曲线中的面积问题(原卷版)_第4页
专题02 圆锥曲线中的面积问题(原卷版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题02圆锥曲线中的面积问题一、单选题1.直线经过抛物线的焦点F且与抛物线交于A、B两点,过A、B两点分别向抛物线的准线作垂线,垂足分别为P、Q,则的面积的最小值是()A. B.4 C. D.62.已知,为椭圆的两个焦点,是椭圆上任意一点,若,则的面积为()A. B. C. D.3.已知双曲线的左右焦点分别为,若双曲线上一点P使得,求的面积()A. B. C. D.4.已知椭圆两焦点,P为椭圆上一点,若,则的的内切圆半径为()A. B. C. D.5.过抛物线的焦点的直线与抛物线交于两点,线段的中点在直线上,为坐标原点,则的面积为()A. B. C. D.9二、多选题6.在平面直角坐标系中,已知双曲线的焦点在圆上,圆与双曲线的渐近线在第一、二象限分别交于、两点,若点满足(为坐标原点),下列说法正确的有()A.双曲线的虚轴长为B.双曲线的离心率为C.双曲线的一条渐近线方程为D.三角形的面积为7.已知曲线C的方程为,,点P是C上的动点,直线与直线交于点M,直线与直线交于点N,则的面积可能为()A.73 B.76 C.68 D.728.双曲线C:的右焦点为F,点P在双曲线C的一条渐近线上,O为坐标原点,则下列说法正确的是()A.双曲线C的离心率为;B.若,则的面积为;C.的最小值为2;D.双曲线与C的渐近线相同.9.已知、是双曲线的上、下焦点,点是该双曲线的一条渐近线上的一点,并且以线段为直径的圆经过点,则下列说法正确的有()A.双曲线的渐近线方程为B.以为直径的圆方程为C.点的横坐标为D.的而积为三、解答题10.已知圆,直线是圆与圆的公共弦所在直线方程,且圆的圆心在直线上.(1)求圆的方程;(2)过点分别作直线、,交圆于、、、四点,且,求四边形面积的取值范围.11.已知椭圆的一个焦点为,左、右顶点分别为,.经过点的直线与椭圆交于,两点.(1)当直线的倾斜角为时,求线段的长;(2)记与的面积分别为和,求的最大值.12.已知直线与抛物线交于A、B两点,P是抛物线C上异于A、B的一点,若重心的纵坐标为,且直线、的倾斜角互补.(Ⅰ)求k的值.(Ⅱ)求面积的取值范围.13.已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:;(2)若点在轴的上方,当的面积最小时,求直线的斜率的平方.14.设F1,F2分别是椭圆(a>b>0)的左、右焦点,且椭圆的离心率为,过F2的直线与椭圆交于A、B两点,且的周长为,(1)求椭圆C的方程;(2)过F2点且垂直于的直线与椭圆交于C、D两点,求四边形ACBD面积的最小值.15.已知抛物线的焦点F恰为椭圆的一个顶点,且抛物线的通径(过抛物线的焦点F且与其对称轴垂直的弦)的长等于椭圆的两准线间的距离.(1)求抛物线及椭圆的标准方程;(2)过点F作两条直线,,且,的斜率之积为.①设直线交抛物线于A,B两点,交抛物线于C,D两点,求的值;②设直线,与椭圆的另一个交点分别为M,N.求面积的最大值.16.已知椭圆经过点,且短轴长为2.(1)求椭圆的标准方程;(2)若直线与椭圆交于,两点,且,求面积的取值范围.17.在平面直角坐标系中,动点到直线的距离与到点的距离之差为.(1)求动点的轨迹的方程;(2)过点的直线与交于、两点,若的面积为,求直线的方程.18.如图,为椭圆的下顶点,过点的直线交抛物线于两点,是的中点.(1)求证:点的纵坐标是定值;(2)过点作与直线倾斜角互补的直线交椭圆于两点.问:为何值时,的面积最大?并求面积的最大值.19.已知椭圆的左、右顶点分别为,.过右焦点且垂直于轴的直线交椭圆于两点,且.(1)求椭圆的方程;(2)斜率大于的直线经过点,且交椭圆于不同的两点(在点之间).记与的面积之比为,求实数的取值范围.20.已知双曲线的标准方程为,分别为双曲线的左、右焦点.(1)若点在双曲线的右支上,且的面积为,求点的坐标;(2)若斜率为1且经过右焦点的直线与双曲线交于两点,求线段的长度.21.已知椭圆的左、右焦点分别为,离心率为,直线与的两个交点间的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)分别过作满足,设与的上半部分分别交于两点,求四边形面积的最大值.22.在平面直角坐标系中,椭圆的离心率为,且点在椭圆上.(1)求椭圆的方程;(2)若点都在椭圆上,且的中点在线段(不包括端点)上.①求直线的斜率;②求面积的最大值.23.已知椭圆M:的一个焦点为,左右顶点分别为A,B.经过点的直线l与椭圆M交于C,D两点.(Ⅰ)求椭圆方程;(Ⅱ)当直线l的倾斜角为时,求线段CD的长;(Ⅲ)记△ABD与△ABC的面积分别为和,求的最大值.24.已知圆:和点,是圆上任意一点,线段的垂直平分线和相交于点,的轨迹为曲线.(1)求曲线的方程;(2)点是曲线与轴正半轴的交点,直线交于、两点,直线,的斜率分别是,,若,求面积的最大值.25.如图,在平面直标中,椭圆过点.(1)求椭圆C的标准方程;(2)点A为椭圆C的左顶点,过点A的直线与椭圆C交于x轴上方一点B,以AB为边作平行四边形ABCD,其中直线CD过原点,求平行四边形ABCD面积S的最大值;(3)在(2)的条件下,是否存在如下的平行四边形ABCD:“原点到直线AB的距离与线段AB的长度相等”,请说明理由.四、填空题26.已知椭圆的左、右焦点分别为,过且倾斜角为的直线交椭圆于两点,则的内切圆半径为________.27.椭圆的左焦点为F,直线与椭圆相交于A、B两点,当的周长最大时,的面积为________.28.已知椭圆,过右焦点的直线与椭圆交与两点,为坐标原点,则的面积为__________.29.直线与抛物线交于,两点,为抛物线上一点,,,三点的横坐标依次成等差数列.若中,边上的中线的长为3,则的面积为____.30.已知点,抛物线的焦点为,准线为l,线段交抛物线于点.过作的垂线,垂足为,若,则三角形的面积__________.31.已知经过点(1,0)的直线l与抛物线y2=4x相交于A,B两点,点C(-1,-1),且CA⊥CB,则△ABC的面积为________.32.已知经过点的直线与抛物线相交于,两点,点,且,则的面积为______.五、双空题33.设抛物线的焦点为,准线为,过焦点的直线交抛物线于两点,分别过作的垂线,垂足为,若,则_________.的面积为_________.新高考数学培优专练共39讲(附解析版)目录如下。全套39讲(附解析)word版本见:高考高中资料无水印无广告word群559164877新高考数学培优专练01圆锥曲线中的弦长问题(原卷板及解析版)新高考数学培优专练02圆锥曲线中的面积问题(原卷板及解析版)新高考数学培优专练03圆锥曲线中的中点弦问题(原卷板及解析版)新高考数学培优专练04圆锥曲线中的范围问题(原卷板及解析版)新高考数学培优专练05圆锥曲线中的定点问题(原卷板及解析版)新高考数学培优专练06圆锥曲线中的定值问题(原卷板及解析版)新高考数学培优专练07圆锥曲线中的向量共线问题(原卷板及解析版)新高考数学培优专练08公式法求等差等比数列和(原卷板及解析版)新高考数学培优专练09数列求和方法之裂项相消法(原卷板及解析版)新高考数学培优专练10数列求和方法之错位相减法(原卷板及解析版)新高考数学培优专练11数列求和方法之分组并项求和法(原卷板及解析版)新高考数学培优专练12数列求和方法之倒序相加法(原卷板及解析版)新高考数学培优专练13利用导数证明或求函数的单调区间(原卷板及解析版)新高考数学培优专练14分类讨论证明或求函数的单调区间(含参)(原卷板及解析版)新高考数学培优专练15已知函数的单调区间求参数的范围(原卷板及解析版)新高考数学培优专练16构造函数用函数单调性判断函数值的大小(原卷板及解析版)新高考数学培优专练17利用导数求函数的极值(原卷板及解析版)新高考数学培优专练18利用函数的极值求参数值(原卷板及解析版)新高考数学培优专练19利用导数求函数的最值(原卷板及解析版)新高考数学培优专练20利用导数解决函数的极值点问题(原卷板及解析版)新高考数学培优专练21利用导数解决函数的恒成立问题(原卷板及解析版)新高考数学培优专练22导数解决函数零点交点和方程根的问题(原卷板及解析版)新高考数学培优专练23利用导数证明不等式(原卷板及解析版)新高考数学培优专练24利用导数解决双变量问题(原卷板及解析版)新高考数学培优专练25参变分离法解决导数问题(原卷板及解析版)新高考数学培优专练26构造函数法解决导数问题(原卷板及解析版)新高考数学培优专练27向量法求空间角(原卷板及解析版)新高考数学培优专练28体积法求点面距离(原卷板及解析版)新高考数学培优专练29定义法或几何法求空间角(原卷板及解析版)新高考数学培优专练30根据步骤列出离散型随机变量的分布列(原卷板及解析版)新高考数学培优专练31利用均值和方差的性质求解新的均值和方差(原卷板及解析版)新高考数学培优专练32利用均值和方差解决风险评估和决策型问题(原卷板及解析版)新高考数学培优专练33利用条件概率公式求解条件概率(原卷板及解析版)新高考数学培优专练34利用二项分布概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论