生物化学第23章柠檬酸循环_第1页
生物化学第23章柠檬酸循环_第2页
生物化学第23章柠檬酸循环_第3页
生物化学第23章柠檬酸循环_第4页
生物化学第23章柠檬酸循环_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第23章柠檬酸循环(Citricacidcycle)一、丙酮酸进入柠檬酸循环的准备阶段

——形成乙酰CoA二、柠檬酸循环概貌三、柠檬酸循环的反应机制四、柠檬酸循环的化学总结算五、柠檬酸循环的调控六、柠檬酸循环的双重作用七、柠檬酸循环的发现历史生物化学第23章柠檬酸循环柠檬酸循环

柠檬酸循环(citricacidcycle)也叫三羧酸循环(tricarboxylicacidcycle,TCA循环),

因为德国科学家HansKrebs在阐明柠檬酸循环中作出了突出贡献,又将此途径称为Krebs循环。

在有氧条件下,糖酵解途径产生的丙酮酸进入线粒体,先转变成乙酰CoA,乙酰CoA再进入柠檬酸循环彻底氧化成CO2。在真核细胞中,柠檬酸循环是在线粒体中进行的。生物化学第23章柠檬酸循环一、丙酮酸进入柠檬酸循环的准备阶段——形成乙酰CoA

生物化学第23章柠檬酸循环丙酮酸到乙酰CoA的总反应式OCH3CCOO-

+HS-CoA+NAD+

——————————→OCH3C-SCoA+CO2+NADH

丙酮酸脱氢酶复合体生物化学第23章柠檬酸循环丙酮酸脱氢酶复合体的组成组分缩写肽链数辅基催化的反应丙酮酸脱氢酶组分E124TPP丙酮酸氧化脱羧二氢硫辛酰转乙酰基酶E224硫辛酰胺将乙酰基转移到CoA二氢硫辛酸脱氢酶E312FAD将还原型硫辛酰胺转变为氧化型生物化学第23章柠檬酸循环丙酮酸转变为乙酰CoA的反应步骤

(丙酮酸脱羧反应)E1

丙酮酸TPP丙酮酸TPP加成化合物丙酮酸TPP加成化合物羟乙基-TPP共振形式生物化学第23章柠檬酸循环丙酮酸转变为乙酰CoA的反应步骤(丙酮酸脱羧反应)E2的硫辛酰胺辅基羟乙基-TPP乙酰二氢硫辛酰胺TPP-E1E2生物化学第23章柠檬酸循环丙酮酸转变为乙酰CoA的反应步骤乙酰二氢硫辛酰胺乙酰CoA二氢硫辛酰胺(乙酰基转移到CoA分子上形成乙酰CoA)生物化学第23章柠檬酸循环丙酮酸转变为乙酰CoA的反应步骤(还原型E2被氧化反应)

氧化型E3还原型E2还原型E3

氧化型E2

还原型E3还原型E3氧化型E3E3生物化学第23章柠檬酸循环丙酮酸脱氢酶复合体结构

丙酮酸脱氢酶复合体由60条肽链组成,总分子量为50,000kD,直径约30nm,在电子显微镜下可以看到。E2是复合体的核心,E1及E3结合在E2的外面。E2有一个由赖氨酸残基与硫辛酰胺相连的长链,这个长臂伸长后可达1.4nm,它具有极大的转动灵活性,可将底物从一个酶转送到另一个酶。生物化学第23章柠檬酸循环丙酮酸脱氢酶复合体生物化学第23章柠檬酸循环硫辛酰赖氨酰臂生物化学第23章柠檬酸循环丙酮酸转变为乙酰CoA的总图生物化学第23章柠檬酸循环砷化物对硫辛酰胺的毒害作用生物化学第23章柠檬酸循环丙酮酸脱氢酶复合体的调控

丙酮酸脱氢酶复合体催化的这个反应是哺乳动物体内使丙酮酸转变为乙酰CoA的唯一途径。乙酰CoA既是柠檬酸循环的入口,又是脂类生物合成的起始物质。1.产物控制

产物NADH抑制E3,乙酰CoA抑制E2。2.磷酸化和去磷酸化的调控

E2分子上结合着两种特殊的酶,一种是激酶,另一种是磷酸酶,它们分别使E1磷酸化和去磷酸化,去磷酸化形式是E1的活性形式。Ca2+通过激活磷酸酶的作用,也能使E1活化。生物化学第23章柠檬酸循环二、柠檬酸循环概貌生物化学第23章柠檬酸循环柠檬酸循环总图return生物化学第23章柠檬酸循环三、柠檬酸循环的反应生物化学第23章柠檬酸循环草酰乙酸与乙酰CoA缩合形成柠檬酸

草酰乙酸乙酰CoA

柠檬酰CoA

柠檬酸CoA柠檬酸合酶①112212生物化学第23章柠檬酸循环柠檬酸异构化形成异柠檬酸

柠檬酸顺-乌头酸异柠檬酸乌头酸酶乌头酸酶②222111生物化学第23章柠檬酸循环乌头酸酶中的Fe-S聚簇(中心)含有这类结构的蛋白质称为铁硫蛋白生物化学第23章柠檬酸循环异柠檬酸氧化形成α∣酮戊二酸异柠檬酸脱氢酶

异柠檬酸草酰琥珀酸α-酮戊二酸③1212生物化学第23章柠檬酸循环从异柠檬酸的分支途径异柠檬酸异柠檬酸裂解酶琥珀酸

乙醛酸(植物和有些细菌中发生)生物化学第23章柠檬酸循环α-酮戊二酸氧化脱羧形成琥珀酰CoA

α-酮戊二酸琥珀酰CoAα-酮戊二酸脱氢酶复合体

④1122生物化学第23章柠檬酸循环琥珀酰CoA转化成琥珀酸

烯醇化酶

琥珀酰CoA琥珀酸琥珀酰CoA合成酶⑤1122生物化学第23章柠檬酸循环琥珀酸脱氢形成延胡索酸琥珀酸脱氢酶琥珀酸

延胡索酸⑥(反丁烯二酸)生物化学第23章柠檬酸循环FAD与琥珀酸脱氢酶的共价结合生物化学第23章柠檬酸循环线粒体结构示意图琥珀酸脱氢酶嵌合在线粒体的内膜上。

生物化学第23章柠檬酸循环延胡索酸水合形成L-苹果酸延胡索酸酶

延胡索酸

L-苹果酸⑦生物化学第23章柠檬酸循环L-苹果酸脱氢形成草酰乙酸苹果酸脱氢酶

L-苹果酸草酰乙酸⑧生物化学第23章柠檬酸循环四、柠檬酸循环的化学总结算乙酰CoA+3NAD++FAD+GDP+Pi+2H2O→2CO2+3NADH+3H++FADH2+GTP+CoA柠檬酸循环的总反应式生物化学第23章柠檬酸循环ATP的产量

从丙酮酸开始,柠檬酸循环中循环一圈,共产生4个NADH,1个FADH2,1个GTP(ATP),按每个NADH可以产生2.5个ATP、每个FADH2可以产生1.5个ATP计算,共产生2.5×4(NADH)+1.5×1(FADH2)+1(GTP)

=12.5

个ATP

每个葡萄糖分子(2个丙酮酸)在进入柠檬酸循环后可以产生25个ATP。

每个葡萄糖分子在糖酵解中可以产生2个ATP和2个NADH,共产生

2(ATP)+2.5×2(NADH)=7个ATP

每个葡萄糖分子彻底氧化后共产生32个ATP。生物化学第23章柠檬酸循环五、柠檬酸循环的调控

在柠檬酸循环中,虽然有8种酶参加反应,但在调节循环速度中起关键作用的是3种酶:柠檬酸合酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体。其调控可以分为两个方面:①柠檬酸循环本身各种物质对酶活性的调控;②ADP、ATP和Ca2+的调控。生物化学第23章柠檬酸循环柠檬酸循环本身制约系统的调节1.乙酰CoA和草酰乙酸的供应情况。乙酰CoA来源于丙酮酸,受到丙酮酸脱氢酶复合体活性的控制;草酰乙酸的供应取决于循环是否运行畅通,以及中间产物离开循环的速率和补充的速率。2.[NADH]/[NAD+]的比值。柠檬酸合酶和异柠檬酸脱氢酶都受到NADH的抑制,但异柠檬酸脱氢酶对NADH更为敏感。α-酮戊二酸脱氢酶复合体也受NADH的抑制。3.产物的反馈抑制。柠檬酸合酶受高浓度柠檬酸的抑制;α-酮戊二酸脱氢酶复合体受琥珀酰CoA的抑制。go生物化学第23章柠檬酸循环ATP、ADP和Ca2+对柠檬酸循环的调节1.[ATP]/[ADP]的比值。

[ATP]/[ADP]的比值对柠檬酸循环中的酶有调节作用,ADP是异柠檬酸脱氢酶的别构促进剂,可降低该酶的Km值,促进酶与底物的结合;而ATP抑制该酶。2.Ca2+浓度。

Ca2+可激活丙酮酸脱氢酶的磷酸酶,使丙酮酸脱氢酶去磷酸化而活化,从而增加乙酰CoA的供应。同时Ca2+也能激活异柠檬酸脱氢酶和α-酮戊二酸脱氢酶。生物化学第23章柠檬酸循环乙酰CoA形成和柠檬酸循环中的激活和抑制部位示意图激活×抑制

反馈抑制·生物化学第23章柠檬酸循环六、柠檬酸循环的双重作用

许多合成代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论