山西省大同市北岳中学2022-2023学年高三数学理上学期期末试题含解析_第1页
山西省大同市北岳中学2022-2023学年高三数学理上学期期末试题含解析_第2页
山西省大同市北岳中学2022-2023学年高三数学理上学期期末试题含解析_第3页
山西省大同市北岳中学2022-2023学年高三数学理上学期期末试题含解析_第4页
山西省大同市北岳中学2022-2023学年高三数学理上学期期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同市北岳中学2022-2023学年高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为(

).

A.100

B.1000

C.90

D.900参考答案:A2.下列有关命题说法正确的是A.“”是函数为偶函数的充分不必要条件”B.“是“”的必要不充分条件C.命题“,使得”的否定是:“,均有”D.命题“若则”的逆否命题为真命题参考答案:D3.等比数列中,,则数列的前8项和等于

A.3

B.4

C.5

D.6参考答案:B略4.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x(cm)160165170175180体重y(kg)6366707274根据上表可得回归直线方程,据此模型预报身高为172cm的高三男生的体重为

A.70.09

B.70.12

C.70.55

D.71.05参考答案:B5.英国统计学家E.H.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):法官甲终审结果民事庭行政庭合计维持29100129推翻31821合计32118150

法官乙终审结果民事庭行政庭合计维持9020110推翻10515合计10025125

记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,则下面说法正确的是(

)A.,, B.,,C.,, D.,,参考答案:D【分析】分别求出法官甲、乙民事庭维持原判的案件率为,,行政庭维持原判的案件率,,总体上维持原判的案件率为的值,即可得到答案.【详解】由题意,可得法官甲民事庭维持原判的案件率为,行政庭维持原判的案件率,总体上维持原判的案件率为;法官乙民事庭维持原判的案件率为,行政庭维持原判的案件率为,总体上维持原判的案件率为.所以,,.选D.【点睛】本题主要考查了古典概型及其概率公式的应用,其中解答中认真审题,根据表中的数据,利用古典概型及其概率的公式分别求解相应的概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.已知i是虚数单位,复数对应于复平面内一点(0,1),则|z|=()A. B.4 C.5 D.参考答案:A【考点】A4:复数的代数表示法及其几何意义.【分析】由题意可得=i,变形后利用复数代数形式的乘法运算化简,再由复数模的计算公式求解.【解答】解:由题意,=i,则z=i(2﹣3i)=3+2i,∴|z|=.故选:A.7.已知i是虚数单位,若=2﹣i,则z的模为()A. B.2 C.i D.1参考答案:D【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由=2﹣i,得,∴z的模为1.故选:D.8.若角的终边经过点,则(

)A.

B.

C.

D.参考答案:B9.关于函数,看下面四个结论(

)①f(x)是奇函数;②当x>2007时,恒成立;③f(x)的最大值是;④f(x)的最小值是.其中正确结论的个数为:A.1个 B.2个 C.3个 D.4个参考答案:A【考点】函数的图象.【专题】函数的性质及应用.【分析】根据题意:依次分析命题:①运用f(﹣x)和f(x)关系,判定函数的奇偶性;②取特殊值法,判定不等式是否成立;③④运用sin2x=进行转化,然后利用cos2x和()|x|,求函数f(x)的最值,综合可得答案.【解答】解:y=f(x)的定义域为x∈R,且f(﹣x)=f(x),则函数f(x)为偶函数,因此结论①错.对于结论②,取特殊值当x=1000π时,x>2007,sin21000π=0,且()1000π>0∴f(1000π)=﹣()1000π<,因此结论②错.对于结论③,f(x)=﹣()|x|+=1﹣cos2x﹣()|x|,﹣1≤cos2x≤1,∴﹣≤1﹣cos2x≤,()|x|>0故1﹣cos2x﹣()|x|<,即结论③错.对于结论④,cos2x,()|x|在x=0时同时取得最大值,所以f(x)=1﹣cos2x﹣()|x|在x=0时可取得最小值﹣,即结论④是正确的.故选:A.【点评】本题涉及到函数奇偶性的判断,同时还涉及到三角函数、指数函数的范围问题,此题考查了函数奇偶性的判断及借助不等式知识对函数值域范围进行判断.10.二项式的展开式前三项系数成等差数列,则

.参考答案:二、填空题:本大题共7小题,每小题4分,共28分11.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为

参考答案:12.已知圆C的圆心是直线与y轴的交点,且圆C与直线相切,则圆的标准方程为

.参考答案:略13.公差不为0的等差数列的前n项和,若成等比数列,则

.参考答案:1914.数列中,,则

.参考答案:答案:

15.若,则可化简为

.

参考答案:略16.函数则的值为.参考答案:17.若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程:①x2﹣y2=1;②y=x2﹣|x|;③y=3sinx+4cosx;④对应的曲线中存在“自公切线”的有

.参考答案:②③【考点】直线与圆锥曲线的关系;命题的真假判断与应用.【专题】新定义.【分析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②在x=和x=﹣处的切线都是y=﹣,故②有自公切线.③此函数是周期函数,过图象的最高点的切线都重合或过图象的最低点的切线都重合,故此函数有自公切线.④结合图象可得,此曲线没有自公切线.【解答】解:①x2﹣y2=1是一个等轴双曲线,没有自公切线;②y=x2﹣|x|=,在x=和x=﹣处的切线都是y=﹣,故②有自公切线.③y=3sinx+4cosx=5sin(x+φ),cosφ=,sinφ=,此函数是周期函数,过图象的最高点的切线都重合或过图象的最低点的切线都重合,故此函数有自公切线.④由于,即x2+2|x|+y2﹣3=0,结合图象可得,此曲线没有自公切线.故答案为②③.【点评】正确理解新定义“自公切线”,正确画出函数的图象、数形结合的思想方法是解题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.[选修4-5:不等式选讲]已知函数f(x)=2|x+1|+|x﹣2|的最小值为m.(Ⅰ)求实数m的值;(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:≥3.参考答案:【考点】不等式的证明.【分析】(Ⅰ)分类讨论,即可求实数m的值;(Ⅱ)a+b+c=3,由柯西不等式可得(a+b+c)(++)≥(a+b+c)2,即可证明结论.【解答】(Ⅰ)解:x≤﹣1,f(x)=﹣2x﹣2﹣x+2=﹣3x≥3,﹣1<x<2,f(x)=2x+2﹣x+2=x+4∈(3,6),x≥2,f(x)=2x+2+x﹣2=3x≥6,∴m=3;(Ⅱ)证明:a+b+c=3,由柯西不等式可得(a+b+c)(++)≥(a+b+c)2,∴++≥3.19.(13分)设函数,g(x)=x3﹣x2﹣3.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)如果对于任意的,都有x1?f(x1)≥g(x2)成立,试求实数a的取值范围.参考答案:【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(Ⅰ)函数f(x)的定义域为(0,+∞),,对参数a讨论得到函数的单调区间.(Ⅱ)由题对于任意的,都有x1?f(x1)≥g(x2)成立,则x1?f(x1)≥g(x)max,然后分离参数,求出a的取值范围.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),,当a≤0时,f'(x)>0,函数f(x)在区间(0,+∞)上单调递增;当a>0时,若,则f'(x)≥0,函数f(x)单调递增;若,则f'(x)<0,函数f(x)单调递减;所以,函数f(x)在区间上单调递减,在区间上单调递增.…(Ⅱ),,可见,当时,g'(x)≥0,g(x)在区间单调递增,当时,g'(x)≤0,g(x)在区间单调递减,而,所以,g(x)在区间上的最大值是1,依题意,只需当时,xf(x)≥1恒成立,即恒成立,亦即a≥x﹣x2lnx;…令,则h'(x)=1﹣x﹣2xlnx,显然h'(1)=0,当时,1﹣x>0,xlnx<0,h'(x)>0,即h(x)在区间上单调递增;当x∈(1,2]时,1﹣x<0,xlnx>0,h'(x)<0,(1,2]上单调递减;所以,当x=1时,函数h(x)取得最大值h(1)=1,故a≥1,即实数a的取值范围是[1,+∞).…【点评】本题主要考查含参数的函数求单调区间的方法和利用导数求最值问题,属于难题,在高考中作为压轴题出现.20.已知函数

(1)求不等式的解集;

(2)若关于的不等式在上恒成立,求实数的取值范围。参考答案:考点:绝对值不等式试题解析:(1);(2).考点:绝对值不等式试题解析:(1)由题设知:,

令,解得,这就是两个分界点。把全体实数分成3个区间。

不等式的解集是以下不等式组解集的并集:

,或,或

解得函数的解集为;

(2)不等式即,

时,恒有,

不等式解集是R,

的取值范围是.21.(12分)设二次函数,函数的两个零点为.

(Ⅰ)若求不等式的解集;

(Ⅱ)若且,比较与的大小.参考答案:解析:(Ⅰ)由题意知,……………2分当时,不等式

即为.当时,不等式的解集为或;当时,不等式的解集为.………6分(Ⅱ)且,

即.

………………12分22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l过点P(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论