版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省朝阳市龙城中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四个命题:1
,”是全称命题;2
命题“,”的否定是“,使”;3
若,则;
4
若为假命题,则、均为假命题.其中真命题的序号是(
)A.①② B.①④ C.②④ D.①②③④参考答案:B2.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,
则k值是()A.1
B.
C.
D.参考答案:B略3.已知点,若直线过点与线段相交,则直线的斜率的取值范围是(
)A.
B.
C.
D.参考答案:C4.设变量x,y满足约束条件,则目标函数的最小值为()A.6 B.7 C.8 D.23参考答案:C【分析】先作可行域,再结合图象确定最优解,解得结果.【详解】先作可行域,则直线过点A(2,1)时取最小值7,选B.【点睛】本题考查线性规划求最值问题,考查基本分析求解能力,属基本题.5.下列结论正确的是(
)A.若a>b,则ac>bc
B.若a>b,则a2>b2
C.若a>b,c<0,则a+c<b+c
D.若>,则a>b参考答案:D6.已知点,,直线上有两个动点M,N,始终使,三角形的外心轨迹为曲线C,P为曲线C在一象限内的动点,设,,,则(
)A、
B、C、
D、参考答案:C略7.已知是平面内两个互相垂直的单位向量,若向量满足·,则的最大值是(
)A.
B.2
C.1
D.参考答案:A8.为了得到函数的图象,可以将函数的图象(
)A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度参考答案:B试题分析:∵,∴将函数的图象向右平移个单位长度.故选B.考点:函数的图象变换.9.原点和点在直线的两侧,则的取值范围是
(
)A.或
B.或
C.
D.参考答案:C略10.设,,是自然对数的底数(
)A.若,则
B.若,则C.若,则
D.若,则参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的准线方程是▲.参考答案:y=-112.已知AC、BD为圆的两条相互垂直的弦,垂足为,则四边形ABCD的面积的最大值为
.参考答案:513.命题“存在x∈Z,使x2+2x+m≤0”的否定是. 参考答案:?x∈Z,x2+2x+m>0【考点】命题的否定. 【专题】规律型. 【分析】将“存在”换为“?”同时将结论“x2+2x+m≤0”换为“x2+2x+m>0”. 【解答】解:“存在x∈Z,使x2+2x+m≤0”的否定是 ?x∈Z,x2+2x+m>0, 故答案为?x∈Z,x2+2x+m>0 【点评】求含量词的命题的否定,应该将量词交换同时将结论否定. 14.将参数方程为参数)化为普通方程为________.参考答案:【分析】利用即可消去参数,得到普通方程【详解】由,可得:,根据,可得,故答案为【点睛】本题主要考查圆的参数方程转化为普通方程,主要利用,属于基础题。15.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为
时,其容积最大.参考答案:略16.代数式中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得=.参考答案:3【考点】类比推理.【分析】通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,6+═m2,即6+m=m2,解得,m=3(﹣2舍去).故答案为:3.【点评】本题考查类比推理的思想方法,考查从方法上类比,是一道基础题.17.函数的单调递减区间为
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(1)求的最小正周期T;(2)求函数的单调区间.参考答案:略19.某学校为促进学生的全面发展,积极开展丰富多样的社团活动,根据调查,学校在传统民族文化的继承方面开设了“泥塑”、“剪纸”、“年画”三个社团,三个社团参加的人数如下表示所示:社团泥塑剪纸年画人数320240200为调查社团开展情况,学校社团管理部采用分层抽样的方法从中抽取一个容量为n的样本,已知从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人.(I)求三个社团分别抽取了多少同学;(Ⅱ)若从“剪纸”社团抽取的同学中选出2人担任该社团活动监督的职务,已知“剪纸”社团被抽取的同学中有2名女生,求至少有1名女同学被选为监督职务的概率.参考答案:【考点】分层抽样方法;古典概型及其概率计算公式.【分析】(I)设出抽样比,由已知中三个社团中的人数计算出各社团中抽取的人数,结合从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人,可得到抽样比,进而得到三个社团分别抽取了多少同学;(Ⅱ)由(I)中从“剪纸”社团抽取了6名同学,可列举出从中选出2人担任该社团活动监督的职务的基本事件总数,结合“剪纸”社团被抽取的同学中有2名女生,可列举出从中选出2人至少有1名女同学的基本事件个数,进而代入古典概型概率计算公式得到答案.【解答】解:(I)设出抽样比为x,则“泥塑”、“剪纸”、“年画”三个社团抽取的人数分别为:320x,240x,200x∵从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人∴320x﹣240x=2解得x=故“泥塑”、“剪纸”、“年画”三个社团抽取的人数分别为:8人,6人,5人(II)由(I)知,从“剪纸”社团抽取的同学共有6人,其中有两名女生,则从“剪纸”社团抽取的同学中选出2人担任该社团活动监督的职务,共有=15种不同情况;其中至少有1名女同学被选为监督职务的情况有=9种故至少有1名女同学被选为监督职务的概率P==20.设为正数,证明:参考答案:证:对归纳,时显然成立等号;设时结论对于任意个正数成立,当时,对于任意个正数,据假设有,…5分所以
只要证,
…①平方整理,只要证,
…②…10分由柯西不等式
……………15分即所以即②成立,因此当时结论成立.故由归纳法知,所证不等式成立.……20分
21.如图,正方体ABCD﹣A1B1C1D1中,E是DD1的中点.(1)求证:BD1∥平面AEC.(2)求异面直线BC1与AC所成的角.参考答案:【考点】直线与平面平行的判定;异面直线及其所成的角.【分析】(1)利用线面平行的判定定理进行证明.(2)连结AD1、CD1,可证出四边形ABC1D1是平行四边形,得BC1∥AD1,得∠D1AC(或补角)就是异面直线AC与BC1所成角.等边△AD1C中求出∠D1AC=60°,即得异面直线AC与BC1所成角的大小.【解答】解:(1)连结BD交AC于O,则O为BD的中点,连EO,因为E是DD1的中点,所以EO∥BD1,又EO?面AEC,BD1?面AEC,所以BD1∥平面AEC.(2)连结AD1、CD1,∵正方体ABCD﹣A1B1C1D1中,ABC1D1,∴四边形ABC1D1是平行四边形,得BC1∥AD1,由此可得∠D1AC(或补角)就是异面直线AC与BC1所成角.∵△AD1C是等边三角形,∴∠D1AC=60°,即异面直线AC与BC1所成角的大小为60°.22.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.参考答案:【考点】直线与平面垂直的性质;直线与平面平行的判定;直线与平面垂直的判定.【专题】空间位置关系与距离;立体几何.【分析】(1)D,E分别为AC,AB的中点,易证DE∥平面A1CB;(2)由题意可证DE⊥平面A1DC,从而有DE⊥A1F,又A1F⊥CD,可证A1F⊥平面BCDE,问题解决;(3)取A1C,A1B的中点P,Q,则PQ∥BC,平面DEQ即为平面DEP,由DE⊥平面,P是等腰三角形DA1C底边A1C的中点,可证A1C⊥平面DEP,从而A1C⊥平面DEQ.【解答】解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC,又DE?平面A1CB,∴DE∥平面A1CB.
(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,∴DE⊥平面A1DC,而A1F?平面A1DC,∴DE⊥A1F,又A1F⊥CD,∴A1F⊥平面BCDE,∴A1F⊥BE.
(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024矿山劳务承包合同范本
- 2024质押式借款合同范本
- 2024绿植花卉租赁合同(详细版)
- 2024自家租房简单合同范本
- 2024计算机软件著作权登记委托代理合同范文
- 2024无线覆盖合同模板
- 2024洲际酒店管理合同
- 深圳大学《应用光学实验》2021-2022学年第一学期期末试卷
- 创业策划书集锦15篇
- 美容院消费股东协议书(2篇)
- 思辨与创新智慧树知到期末考试答案章节答案2024年复旦大学
- 【2022新版】ai《智慧办公》解决方案课件
- 湖南省长沙市长郡教育集团等校联考2023-2024学年九年级下学期4月期中语文试题
- 医疗纠纷处理培训
- 新高考教学质量考核方案
- (完整版)韩国商法
- 体育课教学活动设计方案
- 中华民族共同体概论课件第六讲五胡入华与中华民族大交融(魏晋南北朝)
- 【课件】Unit+3Extended+reading+Of+Friendship+说课课件牛津译林版(2020)高中英语必修第一册
- 2024年广东佛山市三水海江昇平建设工程有限公司招聘笔试参考题库附带答案详解
- 4.1DNA是主要的遗传物质课件高一下学期生物人教版必修2
评论
0/150
提交评论