版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.(2019广西省贵港市,题号10,分值3分)将一条宽度为的彩带按如图所示的方法折叠,折痕为,重叠部分为(图中阴影部分),若,则重叠部分的面积为A. B. C. D.【答案】.【思路分析】过作于,则,依据勾股定理即可得出的长,进而得到重叠部分的面积.【解题过程】解:如图,过作于,则,,,,中,,重叠部分的面积为,故选:.【知识点】翻折变换(折叠问题)2.(2019贵州省毕节市,题号8,分值3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A. B.3 C. D.5【答案】B.【解题过程】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.【知识点】勾股定理.3.(2019湖北咸宁,2,3分)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()【答案】B【解析】解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.【知识点】勾股定理的证明4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.二、填空题1.(2019贵州省毕节市,题号19,分值5分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.【答案】15﹣5.【思路分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解题过程】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10,∵AB∥CF,∴BM=BC×sin30°=10×=5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.故答案是:15﹣5.【知识点】含30度角的直角三角形;勾股定理.2.(2019贵州黔西南州,20,3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是.【答案】15﹣53【解析】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=103,∵AB∥CF,∴BM=BC×sin30°=103×1CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=53,∴CD=CM﹣MD=15﹣53.故答案是:15﹣53.【知识点】含30度角的直角三角形;勾股定理3.(2019海南,15题,4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转(0°<<90°)得到AE,直角边AC绕点A逆时针旋转(0°<<90°)得到AF,连接EF,若AB=3,AC=2,且+=∠B,则EF=________.第15题图【答案】【解析】∵+=∠B,∴∠EAF=∠BAC+∠B=90°,∴△AEF是直角三角形,且AE=AB=3,AF=AC=2,∴EF==【知识点】旋转,勾股定理4.(2019黑龙江哈尔滨,16,3分)如图将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为.【答案】:【解析】解:∵将△ABC绕点C逆时针旋转得到△A′B′C,∴AC=A'C=3,∠ACB=∠ACA'=45°∴∠A'CB=90°∴A'B==故答案为【知识点】旋转的性质;勾股定理5.(2019山东东营,14,3分)已知等腰三角形的底角是30°,腰长为2,则它的周长是____________.【答案】【解题过程】如图,过A作AD⊥BC于D,则∠ADB=∠ADC=90°,∵AB=AC=2,∠B=30°,∴AD=AB=,由勾股定理得:BD==3,同理CD=3,∴BC=6,∴△ABC的周长为BC+AB+AC=6+2+2=6+4.【知识点】等腰三角形的性质;勾股定理6.(2019北京市,12题,2分)如图所示的网格是正方形网格,则=____________°(点A,B,P是网格线交点).【答案】45°【解析】如图12-1,延长AP至C,连结BC.设图中小正方形的边长为1,由勾股定理得,,;∴.即△PBC为等腰直角三角形,∴∠BPC=45°.由三角形外角的性质得.【知识点】勾股定理及逆定理、三角形外角的性质.7.(2019黑龙江大庆,16题,5分)我国古代数学家赵爽的"勾股方圆图"是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是______.第16题图【答案】1【解析】(a-b)2=a2+b2-2ab,其中,由勾股定理可得,a2+b2=13,直角三角形面积=(13-1)÷4=3,即,所以ab=6所以(a-b)2=a2+b2-2ab=13-12=1.【知识点】勾股定理,完全平方公式8.(2019湖南邵阳,17,6分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾,弦,则小正方形的面积是.【答案】4【解析】解:勾,弦,股,小正方形的边长,小正方形的面积故答案是:4【知识点】数学常识;勾股定理的证明9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.三、解答题1.(2019湖北十堰,24,10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=52,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.【思路分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=3(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解题过程】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:180-α(2)AE=BE+2理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+2(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=52,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG=AB∵AC2=AE2+CE2,∴(52)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.【知识点】全等三角形的性质;旋转的性质;等边三角形的性质;勾股定理2.(2019黑龙江省龙东地区,26,8)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF,BH,BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.图① 图② 图③【思路分析】条件中有等腰三角形ABC,故考虑用等腰三角形的性质;条件中有30°角,且有AD⊥BC,故可以找到与BD有关的的数量关系,即AD=BD;条件中有中点,故考虑构造全等三角形.结合以上信息,再结合问题中的DF,BH两条线段,因此连接CF,问题可解.对于图②和图③,可仿照(1)的思路求解.【解题过程】解:(1)证明:连接CF,∵AB=BC,∠ABC==30°,∴∠BAC=∠ACB=75°.∵AD⊥BC,∴∠ADB=90°,∴∠BAD=60°,∴∠DAC=15°.……………………(1分)∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,………………(1分)∴∠ACF=∠DAC=15°,∴∠BCF=75°-15°=60°,∵BH⊥AB,∠ABC=30°,∴∠CBH==60°,∴∠CBH=∠BCF=60°.………………(1分)在△BHM和△CFM中,∠CBH=∠BCF,BM=CM,∠BMH=∠CMF,∴△BHM≌△CFM,………………(1分)∴BH=CF,∴BH=AF,Rt△ADB中,∠ABC=30°,∴AD=BD,…………(1分)∴DF+BH=BD.………………(1分)(2)图②猜想结论:DF+BH=BD;…………(1分)图③猜想结论:DF+BH=BD.………………(1分)【知识点】等腰三角形的性质;勾股定理;全等三角形的判定和性质3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19HYPERLINK"G:\\2018中考解析\\中考数学(解析版)\\分类汇编\\精品分类汇编,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省不动产二手房买卖合同
- 班主任带班育人策略1500字范文(4篇)
- 建筑测绘甲方与施工方合同范本
- 智慧财税解决方案
- 垃圾处理厂建设施工管理承包合同
- 公共营养师基础知识-营养学基础考试真题及答案解析(二)
- 零星建筑装修改造服务合同
- 选择坚持作文
- 购物中心标识系统安装合同
- 投标代理协议
- 施工图预算的编制工作规范
- 日立电梯MCA调试培训课件
- 电动客车驱动桥总成设计
- 四川省阿坝藏族羌族自治州《综合知识》事业单位国考真题
- 2023年人民法院电子音像出版社招聘笔试题库及答案解析
- 大学生心理健康优秀说课-比赛课件
- 收款账户变更的声明
- 九年级道德与法治中考复习资料
- 《化学发展简史》学习心得
- 班组建设与班组长管理技巧课件
- 签派员执照考试题库汇总-8签派和实践应用
评论
0/150
提交评论