




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市榆树市秀水镇治江学校高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,且,则函数
(
)A.且为奇函数
B.且为偶函数C.为增函数且为奇函数
D.为增函数且为偶函数参考答案:A2.已知正方体ABCD-A1B1C1D1的体积为1,点M在线段BC上(点M异于B、C两点),点N为线段CC1的中点,若平面AMN截正方体ABCD-A1B1C1D1所得的截面为五边形,则线段BM的取值范围是()A. B. C. D.参考答案:B【分析】当点为线段的中点时,画出截面为四边形,当时,画出截面为五边形,结合选项可得结论.【详解】∵正方体的体积为1,所以正方体的棱长为1,点在线段上(点异于两点),当点为线段的中点时,共面,截面为四边形,如图,即,不合题意,排除选项;当时,截面为五边形,如图,符合题意,即平面截正方体所得的截面为五边形,线段的取值范围为.故选B.【点睛】本题主要考查正方体的性质、截面的画法,考查作图能力与空间想象能力,意在考查对基础知识的熟练掌握与灵活应用,属于难题.3.若直线的倾斜角为,则直线的斜率为(
)
A.
B.
C.
D.
参考答案:4.若角α与角β的终边关于y轴对称,则()A.α+β=π+kπ(k∈Z) B.α+β=π+2kπ(k∈Z)C. D.参考答案:B【考点】终边相同的角.【专题】函数思想;综合法;三角函数的求值.【分析】根据角α与角β的终边关于y轴对称,即可确定α与β的关系.【解答】解:∵π﹣α是与α关于y轴对称的一个角,∴β与π﹣α的终边相同,即β=2kπ+(π﹣α)∴α+β=α+2kπ+(π﹣α)=(2k+1)π,故答案为:α+β=(2k+1)π或α=﹣β+(2k+1)π,k∈z,故选:B.【点评】本题主要考查角的对称之间的关系,根据终边相同的关系是解决本题的关键,比较基础.5.已知集合,,那么等于
.参考答案:6.圆关于坐标原点对称的圆的方程是
(
)A.
B.C.
D.参考答案:C略7.函数y=的值域是 (
)A.(-∞,-)∪(-,+∞)
B.(-∞,)∪(,+∞)(1)
(-∞,-)∪(-,+∞)
D.(-∞,)∪(,+∞)参考答案:B8.点A(1,3)关于直线y=kx+b对称的点是B(-2,1),则直线y=kx+b在x轴上的截距是(
)A. B.
C.
D.参考答案:B略9.已知a,b为不同的直线,为不同的平面,则下列说法正确的是(
)A.若,则B.若不平行,则a,b为异面直线C.若,则D.若,则参考答案:D若,则有可能垂直,也有可能平行,也可能异面但不垂直,也可能相交不垂直,故A错误,B也错误;若,则有可能在内,故C错;由可得或在内,又所以,故D正确.本题选择D选项.
10.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x)=,已知某家庭今年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m319元若四月份该家庭使用了20m3的煤气,则其煤气费为()元.A.10.5 B.10 C.11.5 D.11参考答案:C【分析】根据待定系数法求出A、B、C的值,可得f(x)的表达式,从而求出f(20)的值即可.【解答】解:由题意得:C=4,将(25,14),(35,19)代入f(x)=4+B(x﹣A),得:,∴A=5,B=,故x=20时:f(20)=4+(20﹣5)=11.5,故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.弧长为l,圆心角为2弧度的扇形,其面积为S,则
.参考答案:2设扇形的半径为,则,,故.填.
12.若函数的最小正周期为π,则f(x)在上的递减区间为.参考答案:[,)【考点】复合函数的单调性.【分析】利用正弦函数的周期性求得ω,本题即求y=sin(2x+)在函数值大于零时的减区间.令2kπ+≤2x+<2kπ+π,求得x的范围,结合在上,确定函数的减区间.【解答】解:函数的最小正周期为π,则=π,∴ω=2,本题即求y=sin(2x+)在函数值大于零时的减区间.令2kπ+≤2x+<2kπ+π,求得kπ+≤x<kπ+,可得函数的减区间为,故函数在上的递减区间为[,),故答案为:[,).13.不等式的解集为
。参考答案:
14.(5分)已知函数,则函数定义域为
.参考答案:[1,+∞)考点: 函数的定义域及其求法.专题: 函数的性质及应用.分析: 根据函数成立的条件即可求函数的定义域.解答: 要使函数有意义,则x﹣1≥0,即x≥1,故函数的定义域为[1,+∞),故答案为:[1,+∞)点评: 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.15.若函数是奇函数,则实数的值为
.参考答案:16.在数列中,,,那么的通项公式是
。参考答案:17.已知向量.若向量与的夹角是钝角,则实数的取值范围是____________参考答案:(-∞,-3)【分析】由,可知,因为向量与的夹角是钝角,从而得出答案。【详解】因为向量,所以因为向量与的夹角是钝角,所以解得,而与不可能共线,所以实数的取值范围是【点睛】本题考查向量数量积的坐标运算,属于一般题。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)为了及时向群众宣传“十九大”党和国家“乡村振兴”战略,需要寻找一个宣讲站,让群众能在最短的时间内到宣讲站.设有三个乡镇,分别位于一个矩形MNPQ的两个顶点M,N及PQ的中点S处,,,现要在该矩形的区域内(含边界),且与M,N等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为.(Ⅰ)设,将L表示为x的函数;(Ⅱ)试利用(Ⅰ)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.
参考答案:解:(Ⅰ)如图,延长交于点,由题设可知,,,在中,,--------3分,
-------------6分(Ⅱ)----------------------8分令,则,得:或(舍),
------------------------10分当时,,取最小值,即宣讲站位置满足:时可使得三个乡镇到宣讲站的距离之和最小.---------------12分
19.(本题满分12分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明PB∥平面ACM;(2)证明AD⊥平面PAC;(3)求直线AM与平面ABCD所成角的正切值.参考答案:22.解析:(1)证明:如图,连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点.又M为PD的中点,所以PB∥MO.因为PB?平面ACM,MO?平面ACM,所以PB∥平面ACM.(2)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC.又PO⊥平面ABCD,AD?平面ABCD,所以PO⊥AD.而AC∩PO=O,所以AD⊥平面PAC.(3)如图,取DO中点N,连接MN,AN.因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD,所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,AD=1,AO=,DO=.从而AN=DO=.在Rt△ANM中,tan∠MAN===,即直线AM与平面ABCD所成角的正切值为.
略20.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知,,,,,,,则在扇形BCD中随机取一点求此点取自阴影部分的概率.参考答案:【分析】设扇形的半径为,利用勾股定理求出的值,并求出,求出扇形的面积,并计算出阴影部分区域的面积,最后利用几何概型的概率公式可得出所求事件的概率。【详解】记“在扇形中随机取一点,此点取自阴影部分”为事件设,则,根据勾股定理,得,解得:,,由几何概型概率计算公式,得.【点睛】本题考查几何概型概率公式的应用,考查平面区域几何概型概率的计算,解题关键在于求出相应区域的面积,考查计算能力,属于中等题。21.(12分)已知向量,,.(Ⅰ)求的值;
(Ⅱ)若,,且,求.参考答案:22.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国道路标线清除设备行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国连翘行业市场深度调研及发展前景与投资研究报告
- 2025-2030中国轻柔卸妆乳行业市场发展分析及前景趋势与投资研究报告
- 2025-2030中国轮椅(电动和手动)行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国西服行业市场发展趋势与前景展望战略研究报告
- Module 7Unit 3 Language practice教学设计-2023-2024学年外研版英语七年级上册
- 2025-2030中国蛋糕粉行业市场发展趋势与前景展望战略研究报告
- 测绘上半年工作总结
- 2025-2030中国茶叶面膜行业市场现状分析及竞争格局与投资发展研究报告
- 地产咨询公司vs酒店管理公司战略合作协议
- 航天航空科普知识竞赛考试题库及答案(共400多题)
- 第章脂肪酸的分解代谢
- 2022年宁夏粮食和物资储备局所属事业单位考试真题及答案
- 工作秘密事项清单范文(6篇)
- 川09J139 居住建筑油烟气集中排放建筑构造(DBJT20-65)
- 浙江工商大学论文答辩汇报通用ppt模板
- 2023年北京市高中力学竞赛决赛试题
- C++反汇编与逆向分析技术揭秘(第2版)
- 2023届湖北省武汉市高三毕业生4月调考英语试卷及参考答案
- 肝移植并发症胆道并发症
- SMT失效模式分析PFMEA
评论
0/150
提交评论