全等三角形判定-优秀课件_第1页
全等三角形判定-优秀课件_第2页
全等三角形判定-优秀课件_第3页
全等三角形判定-优秀课件_第4页
全等三角形判定-优秀课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形全等的判定2023/7/1教学目标1.回顾本章所学知识内容,构建知识结构框架,使所学知识系统化。2.熟练掌握三角形全等的条件,学会多角度.多方位的观察图形和思考问题。3.进一步学习有条理的思考.运用四步法来完成证明题。4.感受全等三角形与生活的密切联系,体会数学的价值,增强用数学的意识。知识点1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形2、全等三角形的性质:全等三角形的对应边相等,对应角相等。3、三角形全等的条件:SSSSASASAAAS

HL4、应用:利用全等三角形性质证明两条线段或两个角相等。

边角边公理(3种)我们学过几种三角形的全等判定呢?角边角公理角角边公理角边角公理(ASA)有两个角和它们的夹边对应相等的两个三角形全等小结角角边公理(AAS)有两角和其中一角的对边对应相等的两个三角形全等小结画全等三角形的另一个方法如右上图,画法:1、画线段A´B´=AB,

如右下图2、分别以

A´、B´为圆心,AC、BC为半径画弧,两弧相交于点C´.3、连结A´C´、B´C´得A´B´C´.剪下

A´B´C´放在ABC上,可以看到A´B´C´

≌ABC,由此可以得到判定两个三角形全等的又一个公理.ABCA´B´C´已知任意ABC,画一个A´B´C´,使A´B´=AB,A´C´=AC,B´C´=BC.有三边对应相等的两个三角形全等学个新知识边边边(SSS)公理小结证明:AD=AD(公共边),在ABD和ACD中,AB=AC,DB=DC(D是中点),∴ABD≌ACD(SSS),∴∠1=∠BDC=(平角定义)∴∠1=∠2(全等三角形的对应角相等).∴AD⊥BC(垂直定义)90°如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架。求证:AD⊥BC例1例2已知:如图,AB=DC,AD=BC.求证:∠A=∠C.提示:要证明∠A=∠C,可设法使它们分别在两个三角形中,为此,只要连结BD即可证明:连结BD在BAD和DCB中,AB=CDAD=CBBD=DB(公共边)∴∠A=∠C(全等三角形的对应角相等).∴BAD≌DCB(SSS),例3:

已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEFDEFABC(1)若要以“SAS”为依据,还缺条件

_____;

AB=DE(2)若要以“ASA”为依据,还缺条件____;∠ACB=∠DFE(3)若要以“AAS”为依据,还缺条件_____

∠A=∠D(4)若要以“SSS”

为依据,还缺条件___

AB=DEAC=DF(5)若∠B=∠DEF=90°要以“HL”

为依据,还缺条件_____AC=DF证明题的分析思路:①要证什么②已有什么③还缺什么④创造条件注意1、证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法

2、全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时①要观察待证的线段或角,在哪两个可能全等的三角形中。②有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角总之,证明过程中能用简单方法的就不要绕弯路。==__ABCDP例5已知:如图,P是BD上的任意一点AB=CB,AD=CD.求证:PA=PC①要证明PA=PC可将其放在ΔAPB和ΔCPB或ΔAPD和ΔCPD考虑②已有两条边对应相等(其中一条是公共边)

③还缺一组夹角对应相等

若能使∠ABP=∠CBP或∠ADP=∠CDP即可。

创造条件

分析:==__ABCDP例5已知:P是BD上的任意一点AB=CB,AD=CD.求证PA=PC证明:在△ABD和△CBD中

AB=CBAD=CDBD=BD∴△ABD≌△CBD(SSS)∴∠ABD=∠CBD

在△ABP和△CBP中

AB=BC∠ABP=∠CBPBP=BP∴△ABP≌△CBP(SAS)∴PA=PC例6。已知:如图AB=AE,∠B=∠E,BC=EDAF⊥CD求证:点F是CD的中点分析:要证CF=DF可以考虑CF、DF所在的两个三角形全等,为此可添加辅助线构建三角形全等,如何添加辅助线呢?已有AB=AE,∠B=∠E,BC=ED

怎样构建三角形能得到两个三角形全等呢?连结AC,AD

添加辅助线是几何证明中很重要的一种思路

证明:连结AC和AD∵在△ABC和△AED中,AB=AE,∠B=∠E,BC=ED∴△ABC≌△AED(SAS)∴AC=AD(全等三角形的对应边相等)∵AF⊥CD∴∠AFC=∠AFD=90°,在Rt△AFC和Rt△AFD中AC=AD(已证)AF=AF(公共边)∴Rt△AFC≌Rt△AFD(HL)∴CF=FD(全等三角形的对应边相等)∴点F是CD的中点如果把例4来个变身,聪明的同学们来再试身手吧!已知:如图AB=AE,∠B=∠E,BC=ED,点F是CD的中点

(1)求证:AF⊥CD(2)连接BE后,还能得出什么结论?(写出两个)课堂练习练习三练习二练习一练习三已知:如右图,AB、CD相交于点O,AC∥DB,OC=OD,E、F为AB上两点,且AE=BF.求证:CE=DF.证明:在AOC和BOD中,∵AC∥DB,∴∠A=∠B(两直线平等,内错角相等).又∵∠AOC=∠BOD(对顶角相等)∠A=∠B(已证),OC=OD(已知)∴AOC≌BOD(AAS)∴AC=BD在AEC和BFD中,

AC=BD(已证),∠A=∠B(已证),AE=BF(已知).∴AEC≌BFD(ASA)∴CE=DF练习二已知:AB=AD,CB=CD.求证:AC⊥BD.分析:欲证AC⊥BD,只需证∠AOB=∠AOD,这就要证明ABO≌ADO,它已经具备了两个条件:AB=AD,OA=AO,所以只需证∠BAO=∠DAO,为了证明这一点,还需证明ABC≌ADC.证明:在ABC和ADC中,AB=AD(已知),CB=CD(已知),AC=AC(公共边)∴ABC≌ADC(SSS),∴∠BAO=∠DAO(全等三角形的对应角相等)在ABO和ADO中,AB=AD(已知),∠BAO=∠DAO(已证),AO=AO(公共边)∴ABO≌ADO(SAS),∴∠AOB=∠AOD(全等三角形的对应角相等)∴∠AOB=∠AOD=90°.∴AC⊥BD(垂直定义).

又∵∠AOB+∠AOD=180°(邻补角定义)如右图,已知:ABC的顶点和DBC的顶点A和D在BC的同旁,AB=DC,

AC=DB,AC和DB相交于点O.求证:OA=OD.练习一证明:在ABC和DCB中,∴∠A=∠D(全等三角形的对应角相等).AB=DC(已知),AC=DB(已知),BC=CB(公共边),∴ABC≌DCB(SSS)在AOB和DOC中,∠AOB=∠DOC(对顶角)∠A=∠D(已证)AB=DC(已知)∴AOB≌DOC(AAS)∴OA=OD.

归纳一个条件两个条件条件都还不够小结:1、全等三角形的定义,性质,判定方法。2、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论