版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市茶亭中学2021年高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数在上的最小值为,最大值为2,则的最大值为A.
B.
C.
D.参考答案:B2.已知平面向量=(1,2),=(﹣2,m),且,则=()A. B. C. D.参考答案:C【考点】9P:平面向量数量积的坐标表示、模、夹角;9K:平面向量共线(平行)的坐标表示.【分析】利用两个向量共线时,x1y2=x2y1求出m,得到的坐标,再利用向量的模的定义求出的值.【解答】解:由,m=﹣2×2=﹣4,则,故选C.3.二次不等式的解集为空集的条件是
(
)A.
B.
C.
D.参考答案:A略4.
设,且,则
(
)(A)
(B)10
(C)20
(D)100参考答案:A又5.函数(其中)的图像不可能是(
)A.
B.
C.
D.参考答案:C(1)当时,,其图象为选项A所示;(2)当时,.若,则图象如选项D所示;若,则图象如选项B所示.综上,选项C不正确.选C.
6.设f(x)=,则f[f(﹣1)]=()A. B.1 C.2 D.4参考答案:A【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分段函数的性质求解.【解答】解:∵f(x)=,∴f(﹣1)=﹣1+2=1,f[f(﹣1)]=f(1)=.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.7.在同一坐标系中,函数与的图像之间的关系是(
)A.关于轴对称
B.关于原点对称
C.关于轴对称
D.关于直线对称参考答案:D略8.三角形ABC中,A,B,C的对边分别为a,b,c,已知下列条件:①b=3,c=4,;
②a=5,b=8,;③c=6,b=,;
④c=9,b=12,其中满足上述条件的三角形有两解的是:
(
)A.①②
B.①④
C.①②③
D.③④参考答案:A略9.定义运算,例如:,则函数的值域为(
)A、(0,1)
B、(0,1]
C、[1,+∞)
D、(-∞,1)参考答案:B略10.已知集合,,则().A.{1,3} B.{2,4,5} C.{1,2,3,4,5} D.参考答案:A解:∵集合,,∴,故选:.二、填空题:本大题共7小题,每小题4分,共28分11.在中,若,,,则
.参考答案:12.已知向量的终点为,则起点的坐标为
★
;参考答案:13.过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小为________.参考答案:45°14.已知函数则_____________;若f(x)=1,则x=___________________.参考答案:4;由题,则若若可得解得舍去);若可得解得综上可得即答案为4;15.已知函数,若对恒成立,则t的取值范围为
.参考答案:(0,1]试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.16.函数的值域是
参考答案:略17.已知:,如果,则的取值范围是
参考答案:(2,3)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)求下列函数的定义域和值域(1);(2)f(x)=参考答案:19.(本小题满分16分)已知数列{an}成等比数列,且an>0.(1)若a2-a1=8,a3=m.①当m=48时,求数列{an}的通项公式;②若数列{an}是唯一的,求m的值;(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.参考答案:设公比为q,则由题意,得q>0.(1)①由a2-a1=8,a3=m=48,得
解之,得或所以数列{an}的通项公式为an=8(2-)(3+)n-1,或an=8(2+)(3-)n-1.②要使满足条件的数列{an}是唯一的,即关于a1与q的方程组有唯一正数解,即方程8q2-mq+m=0有唯一解.由△=m2-32m=0,a3=m>0,所以m=32,此时q=2.经检验,当m=32时,数列{an}唯一,其通项公式是an=2n+2.(2)由a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,得a1(qk-1)(qk-1+qk-2+…+1)=8,且q>1.
a2k+1+a2k+2+…+a3k=a1q2k(qk-1+qk-2+…+1)==≥32,当且仅当,即q=,a1=8(-1)时,
a2k+1+a2k+2+…+a3k的最小值为32.20.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.(1)求四棱锥P﹣BCD外接球(即P,B,C,D四点都在球面上)的表面积;(2)求证:平面FGH⊥平面AEB;(3)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.参考答案:【考点】LY:平面与平面垂直的判定;LW:直线与平面垂直的判定.【分析】(1)证明PD⊥BD,PC⊥BC,根据直角三角形的中线特点得出F为外接球的球心,计算出球的半径代入面积公式计算即可;(2)证明BC⊥平面ABE,FH∥BC即可得出FH⊥平面ABE,于是平面FGH⊥平面AEB;(3)证明EF⊥PB,故只需FM⊥PB即可,利用相似三角形计算出PM.【解答】解:(1)连结FD,FC,∵EA⊥平面ABCD,PD∥EA,∴PD⊥平面ABCD,又BD?平面ABCD,∴PD⊥BD,∵F是PB的中点,∴DF=PB,同理可得FC=PB,∴F为棱锥P﹣BCD的外接球的球心.∵AD=PD=2EA=2,∴BD=2,PB==2,∴四棱锥P﹣BCD外接球的表面积为4π?()2=12π.(2)证明:∵EA⊥平面ABCD,BC?平面ABCD,∴EA⊥CB.又CB⊥AB,AB∩AE=A,∴CB⊥平面ABE.∵F,H分别为线段PB,PC的中点,∴FH∥BC.∴FH⊥平面ABE.又FH?平面FGH,∴平面FGH⊥平面ABE.(3)在直角三角形AEB中,∵AE=1,AB=2,∴.在直角梯形EADP中,∵AE=1,AD=PD=2,∴,∴PE=BE.又F为PB的中点,∴EF⊥PB.假设在线段PC上存在一点M,使PB⊥平面EFM.只需满足PB⊥FM即可,∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥CB,又CB⊥CD,PD∩CD=D,∴CB⊥平面PCD,∵PC?平面PCD,∴CB⊥PC.若PB⊥FM,则△PFM∽△PCB,∴.∵,,,∴.∴线段PC上存在一点M,使PB⊥平面EFM,此时PM=.21.已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)﹣g(x)>0的x的取值范围.参考答案:【考点】对数函数图象与性质的综合应用.【专题】函数的性质及应用.【分析】(1)当a=2时,根据函数f(x)=log2(x+1)为[3,63]上的增函数,求得函数的最值.(2)f(x)﹣g(x)>0,即loga(1+x)>loga(1﹣x),分①当a>1和②当0<a<1两种情况,分别利用函数的单调性解对数不等式求得x的范围.【解答】解:(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)﹣g(x)>0,即lo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论