版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学下册知识点整理每一门科目都有自己的(学习(方法)),但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些(七班级数学)学问点的学习资料,盼望对大家有所关心。
七班级数学学问点归纳
变量之间的关系
一理论理解
1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.
2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
二、列表法:采纳数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的挨次列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以依据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像留意:a.仔细理解图象的含义,留意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特别点的含义(坐标),特殊是图像的起点、拐点、交点
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
1.随着自变量x的渐渐增加(大),因变量y渐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
2.随着自变量x的渐渐增加(大),因变量y渐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).
留意:假如在整个过程中事物的变化趋势不一样,可以采纳分段描述.例如在什么范围内随着自变量x的渐渐增加(大),因变量y渐渐增加(大)等等.
九、估量(或者估算)对事物的估量(或者估算)有三种:
1.利用事物的变化规律进行估量(或者估算).例如:自变量x每增加肯定量,因变量y的变化状况;平均每次(年)的变化状况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;
2.利用图象:首先依据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3.利用关系式:首先求出关系式,然后直接代入求值即可.
初一数学下册学问点(总结)
一元一次方程的解
定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
13、解一元一次方程:
1.解一元一次方程的一般步骤
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,敏捷应用,各种步骤都是为使方程渐渐向x=a形式转化。
2.解一元一次方程时先观看方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
使方程渐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要精确 计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要精确 推断符号,a、b同号x为正,a、b异号x为负。
14、一元一次方程的应用
1.一元一次方程解应用题的类型
(1)探究规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);
(4)工程问题(①工作量=人均效率×人数×时间;②假如一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)安排问题;
(9)竞赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
2.利用方程解决实际问题的基本思路:
首先审题找出题中的未知量和全部的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤
(1)审:认真审题,确定已知量和未知量,找出它们之间的等量关系.
(2)设:设未知数(x),依据实际状况,可设直接未知数(问什么设什么),也可设间接未知数.
(3)列:依据等量关系列出方程.
(4)解:解方程,求得未知数的值.
(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
初一数学方法技巧
我们怎样预习呢?
曰:“先(说说)学习的目标:
(1)知道学问产生的背景,弄清学问形成的过程。
(2)或早或晚的知道学问的地位和作用:
(3)总结出熟悉问题的规律(或说出熟悉问题使用了以前的什么规律)。
再说详细的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助详细的东西加以理解。有时借助字面的含义:有时借助其他学科学问。有时借助图形……理解概念的境界是意会。肯定要在理解概念上下一番苦功夫后再做题。
(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。
(3)对于例题及习题的处理见上面的(2)及下面的第五条。
七班级数学下册学问点相关(文章):
★初一数学下册学问点归纳总结
★初一数学下册学问点
★初一数学下册基本学问点总结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程监理劳务分包协议
- 车站附近人行道改造合同
- 游泳池电工招聘合同模板
- 家电销售经纪人合作协议
- 政府宣传片编剧招聘协议
- 清洁能源高速公路合同管理办法
- 社区活动中心球场施工合同
- 纺织生产电动工具租赁协议
- 污水处理厂改造围挡施工合同
- 皮肤病医院聘用协议样本
- 沪科黔科版《综合实践活动》5上农业小当家 活动一《花坛小暖棚》课件
- 知识图谱构建实践建设方案
- 2024年度跨国业务代理合同3篇
- 内科危重患者的护理
- 纪念抗日救亡一二九运动弘扬爱国精神宣传课件
- 铸牢中华民族共同体意识-形考任务2-国开(NMG)-参考资料
- 机械工程技术训练智慧树知到期末考试答案章节答案2024年北京航空航天大学
- 小学科学跨学科项目化学习案例
- 合成长历通书doc1
- 网球练习场项目计划书
- 完整版)我国汽车营地现状及发展对策分析
评论
0/150
提交评论