




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两角和与差的余弦教学设计一、教学内容分析
本节内容是高一数学必修4(苏教版)第三章《三角恒等变换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。
在学习本章之前,已经学习了三角函数及向量的有关知识,从而为沟通代数、几何与三角函数的联系提供了重要的工具。本章我们将使用这些工具探讨三角函数值的运算。本节内容不仅是推导正弦和(差)角公式、正切和(差)角公式及倍角公式的基础,对于三角变换,三角恒等式的证明,三角函数式的化简、求值等三角问题的解决有重要的支撑作用,而且其推导过程本身就具有重要的教育价值。
二、学生学习情况分析
本节课的主要内容是“两角差的余弦公式的推导及证明”,用到的工具有“单位圆中三角函数的定义”和“平面向量数量积的定义及坐标表示”,都属于基础知识,内容简单,容易理解和接受。但是在向量法证明的过程中,向量夹角的范围是[0,π],与两角差α-β的范围不一致,学生对角的范围说明不清,是本节课的难点。
三、设计思想
教学理念:以“研究性学习”为载体,培养学生自主学习、小组合作的能力。
教学原则:注重学生自主学习与探究能力的培养,体现学生个性的发展与小组合作共性的融合。
教学方法:先学后教,小组合作,师生互动。
四、教学目标
知识与技能:了解用向量法推导两角差的余弦公式的过程,掌握两角和(差)的余弦公式并能运用公式进行简单的三角函数式的化简、求值。
过程与方法:自主探究两角差的余弦公式的表现形式,经历用向量的数量积推导两角差的余弦公式的过程,并能独立利用余弦的差角公式推出余弦的和角公式,理解化归思想在三角变换中的作用。
情感态度与价值观:体验和感受数学发现和创造的过程,感悟事物之间普遍联系和转化的关系。
五、教学重点与难点
重点:两角差的余弦公式的推导及证明。
难点:引入向量法证明两角差的余弦公式及两角差范围的说明。
六、教学程序设计1.情境创设,课上展示。
课前探究:
课上展示:请同学们展示一下课前所得到的结果吧。
设计意图:课前以问题串的形式给学生指明研究方向。问题层层递进,从特殊到一般,使学生的研究具有一定的坡度性。既让学生容易上手,又让学生在研究过程中慢慢深入与提高。
主要目的:让学生自主发现两角差的余弦公式的表达形式。
通过课上展示,学生把课下研究出来的成果与全班同学共享,产生共鸣,为进一步研究两角差的余弦公式做好准备,同时增强表达能力及自信心。
2.合作探究,小组展示。
探究一:两角差的余弦公式的推导
问题4:问题2中我们所得到的结论对于任意角还成立吗?你能证明吗?
问题5:观察我们得到结论的形式,你能联想到什么呢?
探究二:两角和的余弦公式的推导
问题6:你能根据差角的余弦公式推导出和角的余弦公式吗?
问题7:比较差角的余弦公式与和角的余弦公式,它们在结构上有何异同点?
通过小组展示,各个小组之间产生思维的碰撞,迸出火花,得到新的灵感与智慧。从而培养学生团结协作与小组合作的能力。
3.巩固知识,例题讲解。
例1:利用两角和与差的余弦公式证明下列诱导公式:
例3:化简cos100°cos40°+sin80°sin40°
设计意图:教师对各小组展示内容做适当点评,并且对“向量法证明的优点”,“向量法证明过程的完善”,“向量法中向量夹角与两角差的范围的统一”做简要讲解。
例1,例2都是公式的直接应用。例1让学生体会诱导公式将余弦的和差角公式推导出正弦的和差角公式,为下节课埋下伏笔。例2中根据cos15°的值求sin15°的值,tan15°的值的过程都是为推导正弦和差公式,正切和差公式做铺垫。
变式将例2中具体的角变成抽象的角,利用同角三角函数公式求解。在由sinα的值求cosα的值或由cosβ的值求sinβ的值时,要注意根据角的范围确定三角函数值的符号。
例3:是公式的逆用,培养学生逆向思维的能力,让学生对公式结构再认识。
4.提升总结,巩固练习。
提升总结:针对上面的3个例题,谈谈你学到了什么?
(2)利用两角和差的余弦公式求值时,应注意观察、分析题设和公式的结构特点,从整体上把握公式,灵活的运用公式。
(3)在解题过程中,要注意角的范围,确定三角函数值的符号,以防增根、漏根。
设计意图:主要以学生总结为主,老师做适当点评及补充。两角和与差的余弦学情分析
根据现在的学生知识迁移能力差、计算能力差的特点,第一节课不要太多公式应用。两角和与差的余弦效果分析1.让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。2.激发学生的探究欲望,能够独立或合作提出推导其他三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。3.培养学生的“问题意识”,在探索的过程中学会讲“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的。两角和与差的余弦教材的地位和作用:本节课教学内容是高一(下)第四章4.6节第一课时(两角和与差的余弦)。本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及它们的简单应用。这节内容在高考中不但是热点,而且一般都是中、低档题,是一定要拿到分的题。
两角和与差的余弦观评记录本节课的教学设计和教学过程的具体实施有以下几个亮点和创新:导入设计新颖,可见度高,不仅起到了激趣、导思的作用,而且紧扣本节课的内容,最后回扣也好;充分挖掘和发挥了学生的主观能动性;为了加深学生对所学知识的认知过程,设计了多层次的问题思考,不仅增强了学生的感性认识,而且体现了多角度的思维过程;依据教材,又不拘泥于教材。增强了学生的感性认识,教师逐步引导加深了学生对两角和与差的余弦公式关系理解。突破了教材从直接给出公式然后给出证明的过程;整堂课体现了学会的主体地位。给学生提供了足够的学习空间和展示的机会与平台,通过问题思考、学生尝试回答、讨论、合作交流等形式让学生最大限度的投入到课堂活动中来,课堂气氛活跃,实效性强,提高了学生的综合素养;板书设计简洁、系统性强,突出了这节课的主要内容,便于学生理解记忆。本节课存在的几点不足:课堂语言还需要更精练些;有些问题还应多给学生充分时间思考、讨论、回答;对学生的回答要及时予以肯定和表扬,有些问题可让其他学生补充回答;提问学生的面再广一些。两角和与差的余弦评测练习下列说法不正确的是()A正弦函数、余弦函数的定义域是R,值域是。B余弦函数当且仅当时取得最大值1,当且仅当时取得最小值-1.C正弦函数在每个区间上都是减函数。D余弦函数在每个区间上都是减函数。函数的值域是()A.BC.D.R函数的图像()A关于轴对称B关于轴对称C关于原点对称D关于直线对称4.函数的值域是()ABCD5.函数的图像关于原点成中心对称,则等于()ABCD6.求函数的单调区间。7.函数的图像经过怎样的变换才能变成函数的图像。两角和与差的余弦课后反思本节课主要以学生的自主学习、小组合作为主,充分发挥了学生的自主探究能力和团队协作能力,提高了学生发现问题、探究问题和解决问题的能力。情境创设中利用三个问题让学生在课前提前熟悉本节课所学的内容“是什么”,“我能得到哪些结论”,调动了学生的思维与学习的积极性,激发了学生的求知欲。但是
但是如果给出图像,则又会限制数学优秀的学生的解题思路与方法,这对矛盾是由学生的差异所决定的。教师在课堂上应指导、启发学生,注意教学的示范性,明确解题的规范性,实现学生在学习过程中知识的跨越。总之,教学有法,教无定法,贵在得法,为了提高课堂教学效率,我们要从学生的实际出发,以学法带动教法,为高效课堂保驾护航。两角和与差的余弦课标分析
一、知识目标:
1、掌握利用平面内两点间的距离公式进行C(α+β)公式的推导;
2、能用代换法推导C(α-β)公式;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省临沂市兰陵县第一中学2025届高三第三次适物理试题含解析
- 湘潭医卫职业技术学院《分子生物学韩》2023-2024学年第二学期期末试卷
- 山东省菏泽市第一中学2024-2025学年高三“零诊”考试物理试题含解析
- 山西水利职业技术学院《钢琴即兴伴奏(2)》2023-2024学年第二学期期末试卷
- 四川省成都市青羊区石室教育集团2025年初三期末物理试题含解析
- 四川师范大学《智能信息处理》2023-2024学年第二学期期末试卷
- 井陉矿区2025届数学三下期末质量检测试题含解析
- 四川铁道职业学院《大学体育(4)》2023-2024学年第二学期期末试卷
- 江西信息应用职业技术学院《电机学》2023-2024学年第二学期期末试卷
- 山西警官职业学院《小学数学课程标准与教材研究》2023-2024学年第二学期期末试卷
- 电子商务数据分析教学课件汇总完整版电子教案
- 浙江省公安民警心理测验考试题目(含答案)
- (精品)3D打印机毕业论文
- 暖气管道安装施工方案(实用资料)
- 森林防火安全责任书(施工队用)
- 自卸车液压系统安装手册
- 装载机 维护保养检查记录表
- CIE1964_CIE1931_标准照明体_1nm间隔
- (完整word版)建筑工程公司员工证书管理办法
- Oring美国国家标准(AS568)
- 教育因爱幸福井晓辉
评论
0/150
提交评论