版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
./圆锥曲线中的最值取值范围问题90.已知分别是双曲线=l〔a>0,b>0的左、右焦点,P为双曲线上的一点,若,且的三边长成等差数列.又一椭圆的中心在原点,短轴的一个端点到其右焦点的距离为,双曲线与该椭圆离心率之积为。〔I求椭圆的方程;〔Ⅱ设直线与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.90.解:设,不妨P在第一象限,则由已知得解得〔舍去。设椭圆离心率为可设椭圆的方程为〔Ⅱ①当AB②当AB与轴不垂直时,设直线AB的方程为,由已知得代入椭圆方程,整理得当且仅当时等号成立,此时③当综上所述:,此时面积取最大值85.已知曲线C的方程为,F为焦点。〔1过曲线上C一点〔的切线与y轴交于A,试探究|AF|与|PF|之间的关系;〔2若在〔1的条件下P点的横坐标,点N在y轴上,且|PN|等于点P到直线的距离,圆M能覆盖三角形APN,当圆M的面积最小时,求圆M的方程。85.74.已知椭圆的长轴长为,离心率为,分别为其左右焦点.一动圆过点,且与直线相切.<Ⅰ><ⅰ>求椭圆的方程;<ⅱ>求动圆圆心轨迹的方程;<Ⅱ>在曲线上有四个不同的点,满足与共线,与共线,且,求四边形面积的最小值.74.解:<Ⅰ><ⅰ>由已知可得,则所求椭圆方程.<ⅱ>由已知可得动圆圆心轨迹为抛物线,且抛物线的焦点为,准线方程为,则动圆圆心轨迹方程为.<Ⅱ>由题设知直线的斜率均存在且不为零设直线的斜率为,,则直线的方程为:联立消去可得由抛物线定义可知:同理可得又<当且仅当时取到等号>所以四边形面积的最小值为.69.如图,已知直线l:与抛物线C:交于A,B两点,为坐标原点,。〔Ⅰ求直线l和抛物线C的方程;〔Ⅱ抛物线上一动点P从A到B运动时,求△ABP面积最大值.69.解:〔Ⅰ由得,设则因为=所以解得所以直线的方程为抛物线C的方程为〔Ⅱ方法1:设依题意,抛物线过P的切线与平行时,△APB面积最大,,所以所以此时到直线的距离由得,∴△ABP的面积最大值为〔Ⅱ方法2:由得,……9分设,因为为定值,当到直线的距离最大时,△ABP的面积最大,因为,所以当时,max=,此时∴△ABP的面积最大值为66.椭圆与椭圆交于A、B两点,C为椭圆的右项点,〔I求椭圆的方程;〔II若椭圆上两点E、F使面积的最大值66.解:〔I根据题意,设A 解得〔Ⅱ设①②①② 由①-②得直线EF的方程为即 并整理得, 又当63.已知椭圆C,过点M<0,1>的直线l与椭圆C相交于两点A、B.〔Ⅰ若l与x轴相交于点P,且P为AM的中点,求直线l的方程;〔Ⅱ设点,求的最大值.63.〔Ⅰ解:设A<x1,y1>,因为P为AM的中点,且P的纵坐标为0,M的纵坐标为1,所以,解得,又因为点A<x1,y1>在椭圆C上,所以,即,解得,则点A的坐标为或,所以直线l的方程为,或.〔Ⅱ设A<x1,y1>,B<x2,y2>,则所以,则当直线AB的斜率不存在时,其方程为,,此时;当直线AB的斜率存在时,设其方程为,由题设可得A、B的坐标是方程组的解,消去y得所以,则,所以,当时,等号成立,即此时取得最大值1.综上,当直线AB的方程为或时,有最大值1.2009032750.已知点A是抛物线y2=2px〔p>0上一点,F为抛物线的焦点,准线l与x轴交于点K,已知|AK|=|AF|,三角形AFK的面积等于8.20090327〔1求p的值;〔2过该抛物线的焦点作两条互相垂直的直线l1,l2,与抛物线相交得两条弦,两条弦的中点分别为G,H.求|GH|的最小值.2009032750.解:〔Ⅰ设,20090327因为抛物线的焦点,则,,而点A在抛物线上,.又故所求抛物线的方程为.6分〔2由,得,显然直线,的斜率都存在且都不为0.设的方程为,则的方程为.48.椭圆的中心为原点,焦点在轴上,离心率,过的直线与椭圆交于、两点,且,求面积的最大值及取得最大值时椭圆的方程.48.解:设椭圆的方程为直线的方程为,,则椭圆方程可化为即,联立得〔*有而由已知有,代入得所以,当且仅当时取等号由得,将代入〔*式得所以面积的最大值为,取得最大值时椭圆的方程为46.已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切。〔1已知椭圆的离心率;〔2若的最大值为49,求椭圆C的方程.46.解:〔1由题意可知直线l的方程为,因为直线与圆相切,所以=1,既从而〔2设则当此时椭圆方程为当解得但故舍去。综上所述,椭圆的方程为25.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.〔I求椭圆的方程;〔II设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;〔III设与轴交于点,不同的两点在上,且满足求的取值范围.25.解:〔Ⅰ∵∵直线相切,∴∴∵椭圆C1的方程是〔Ⅱ∵MP=MF2,∴动点M到定直线的距离等于它到定点F1〔1,0的距离,∴动点M的轨迹是C为l1准线,F2为焦点的抛物线∴点M的轨迹C2的方程为〔ⅢQ〔0,0,设∴∵∴∵,化简得∴∴当且仅当时等号成立∵∴当的取值范围是8.8.已知点P〔4,4,圆C:与椭圆E:有一个公共点A〔3,1,F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.〔Ⅰ求m的值与椭圆E的方程;〔Ⅱ设Q为椭圆E上的一个动点,求的取值范围.[解]〔Ⅰ点A代入圆C方程,得.∵m<3,∴m=1.圆C:.设直线PF1的斜率为k,则PF1:,即.∵直线PF1与圆C相切,∴.解得.当k=时,直线PF1与x轴的交点横坐标为,不合题意,舍去.当k=时,直线PF1与x轴的交点横坐标为-4,∴c=4.F1〔-4,0,F2〔4,0.2a=AF1+AF2=,,a2=18,b2=2.椭圆E的方程为:.〔Ⅱ,设Q〔x,y,,.∵,即,而,∴-18≤6xy≤18.则的取值范围是[0,36].的取值范围是[-6,6].∴的取值范围是[-12,0].12.12.已知直线与曲线交于不同的两点,为坐标原点.〔Ⅰ若,求证:曲线是一个圆;〔Ⅱ若,当且时,求曲线的离心率的取值范围.[解]〔Ⅰ证明:设直线与曲线的交点为∴即:∴在上∴,∴两式相减得:∴即:∴曲线是一个圆〔Ⅱ设直线与曲线的交点为,∴曲线是焦点在轴上的椭圆∴即:将代入整理得:∴,在上∴又∴∴2∴∴∴∴∴∴∴15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且设点P的轨迹方程为c。〔1求点P的轨迹方程C;〔2若t=2,点M、N是C上关于原点对称的两个动点〔M、N不在坐标轴上,点Q坐标为求△QMN的面积S的最大值。15.[解]〔1设〔2t=2时,25.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.〔I求椭圆的方程;〔II设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;〔III设与轴交于点,不同的两点在上,且满足求的取值范围.25.解:〔Ⅰ∵∵直线相切,∴∴∵椭圆C1的方程是〔Ⅱ∵MP=MF2,∴动点M到定直线的距离等于它到定点F1〔1,0的距离,∴动点M的轨迹是C为l1准线,F2为焦点的抛物线∴点M的轨迹C2的方程为〔ⅢQ〔0,0,设∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安装工程施工合同的争议处理方式3篇
- 数据保密责任书3篇
- 招标管理现象调查3篇
- 安徽人力资源行业劳动合同模板3篇
- 施工中的劳务分包与干挂石材合同解析3篇
- 布线工程招投标书3篇
- 捐赠协议书模板集合3篇
- 招标项目的设计邀请函写作3篇
- 工业材料采购规定文件3篇
- 招标文件领取截止3篇
- JJ∕G(交通) 200-2024 轮碾成型机
- 小学六年级奥数难题100道及答案(完整版)
- 2024-2030年中国钎焊板式换热器行业市场发展趋势与前景展望战略分析报告
- 聚焦高质量+探索新高度+-2025届高考政治复习备考策略
- 看图猜成语共876道题目动画版
- 特种设备使用单位日管控、周排查、月调度示范表
- 供应链成本控制与降本增效
- MOOC 插花艺术-宁波城市职业技术学院 中国大学慕课答案
- 北京市平谷区2023-2024学年九年级上学期期末考试英语试卷
- 2024年度带状疱疹课件
- 消防设施安全检查表
评论
0/150
提交评论