




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于函数的最大值和最小值第1页,讲稿共20页,2023年5月2日,星期三赶时间??缺钱花啊!!第2页,讲稿共20页,2023年5月2日,星期三二次函数图象一次函数图象第3页,讲稿共20页,2023年5月2日,星期三1.函数的最大值设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意x∈I
,都有f(x)≤M,②存在x0∈I,使f(x0)=M.那么称M是函数y=f(x)的最大值.第4页,讲稿共20页,2023年5月2日,星期三准确理解函数最大值的概念(1)对于定义域内全部元素,都有f(x)≤M成立,“任意”是说对每一个值都必须满足不等式.(2)定义中M首先是一个函数值,它是值域的一个元素,注意对②中“存在”一词的理解第5页,讲稿共20页,2023年5月2日,星期三2.函数的最小值设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意x∈I,都有f(x)≥M,②存在x0∈I,使f(x0)=M.那么称M是函数y=f(x)的最小值.第6页,讲稿共20页,2023年5月2日,星期三函数最大值、最小值的几何意义是什么?【提示】函数最大值或最小值是函数的整体性质,从图象上看,函数的最大值或最小值是图象最高点或最低点的纵坐标.思考第7页,讲稿共20页,2023年5月2日,星期三利用函数图象求最值如图为函数y=f(x),x∈[-3,8]的图象,指出它的最大值、最小值及单调区间.第8页,讲稿共20页,2023年5月2日,星期三【解析】观察函数图象可以知道,图象上位置最高的点是(2,3),最低的点是(-1,-3),所以函数y=f(x)当x=2时,取得最大值,最大值是3,当x=-1.5时,取得最小值,最小值是-3.函数的单调增区间为[-1,2],[5,7].单调减区间为[-3,-1],[2,5],[7,8].第9页,讲稿共20页,2023年5月2日,星期三变式练习第10页,讲稿共20页,2023年5月2日,星期三第11页,讲稿共20页,2023年5月2日,星期三第12页,讲稿共20页,2023年5月2日,星期三(1)运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不好作或作不出来时,单调性几乎成为首选方法.(2)函数的最值与单调性的关系①若函数在闭区间[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a),最小值为f(b);②若函数在闭区间[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b),最小值为f(a).第13页,讲稿共20页,2023年5月2日,星期三思考
当一个函数有多个单调增区间和多个单调减区间时,我们该如何简单有效的求解函数最大值和最小值呢?第14页,讲稿共20页,2023年5月2日,星期三二次函数最值问题求二次函数f(x)=x2-6x+4在区间[-2,2]上的最大值和最小值.【思路点拨】由题目可获取以下主要信息①所给函数为二次函数;②在区间[-2,2]上求最值.解答本题可先确定函数在区间[-2,2]上的单调性,再求最值.第15页,讲稿共20页,2023年5月2日,星期三【解析】
f(x)=x2-6x+4=(x-3)2-5,其对称轴为x=3,开口向上,∴f(x)在[-2,2]上为减函数,∴f(x)min=f(2)=-4,f(x)max=f(-2)=20.第16页,讲稿共20页,2023年5月2日,星期三在求二次函数的最值时,要注意定义域.定义域若是区间[m,n],则最大(小)值不一定在顶点处取得,而应看对称轴是在区间[m,n]内还是在区间左边或右边,在区间的某一边时应该利用函数单调性求解.第17页,讲稿共20页,2023年5月2日,星期三函数解析式为“y=x2-2x”
,求函数的在定义域[2,4)上的最值.变式练习第18页,讲稿共20页,2023年5月2日,星期三课堂小结
(1)掌握函数最大值、最小值的概念。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024监理工程师技能提升试题及答案
- 人教版《道德与法治》八年级下册(部编版)第三单元 《6.2国家行政机关》教学设计
- Photoshop数字影像处理案例教程 习题及答案 Chapter 10 人物面部结构优化
- 宠物殡葬行业发展对社会的贡献试题及答案
- 小动物外科手术技巧试题及答案
- 2024年陪诊师考试岗位职责试题及答案
- 夯实基础2024年计算机二级考试试题及答案
- 2024年陪诊师考试省时攻略与试题及答案
- 实施城市公交线路优化调整计划
- 兽医疾病控制方法试题及答案
- 大学生创新创业训练计划项目申报书(模板)
- 争做最美班级主题班会课件
- 铁路职工政治理论应知应会题库
- 2020年交安A、B、C证(公路)考试题库1088题(含答案)
- 墙绘验收单模板
- 节后复工检查表
- 财务有哪些制度要上墙
- 医学教学课件:软组织肿瘤影像诊断
- 矿山矿石损失与贫化管理规程
- 安全生产晨会管理制度
- 直线导轨装配文档课件
评论
0/150
提交评论