版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市星江中学2021年高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知M,N为集合I的非空真子集,且M,N不相等,若,则(
)A.M
B.N
C.I
D.参考答案:A略2.若非零向量a,b满足|a|=|b|,向量2a+b与b垂直,则a与b的夹角为A.150°
B.120°
C.60°
D.30°参考答案:B3.直线过点和点,则直线的方程是(
)A. B. C. D.参考答案:A4.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(?UA)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}参考答案:C【考点】交、并、补集的混合运算.【专题】集合.【分析】由题意求出A的补集,然后求出(?UA)∪B.【解答】解:因为全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则?UA={0,4},(?UA)∪B={0,2,4}.故选C.【点评】本题考查集合的基本运算,考查计算能力.5.设平面向量若则实数m的值为
()
A.
B. C.1
D.2参考答案:B略6.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣) B.y=sin(3x+) C.y=sin(3x﹣) D.y=sin(3x+)参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的图像与性质.【分析】根据函数y=Asin(ωx+φ)的图象变换规律即可求解.【解答】解:把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式为y=sin[3(x﹣)]=sin(3x﹣).故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.7.215°是(
)A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角参考答案:C【分析】本题首先要明确平面直角坐标系中每一象限所对应的角的范围,然后即可判断出在哪一象限中。【详解】第一象限所对应的角为;第二象限所对应的角为;第三象限所对应的角为;第四象限所对应的角为;因为,所以位于第三象限,故选C。【点睛】本题考查如何判断角所在象限,能否明确每一象限所对应的角的范围是解决本题的关键,考查推理能力,是简单题。8.锐角三角形中,内角的对边分别为,若,则的取值范围是(
)A.
B.
C.
D.参考答案:B9.函数y=log(x2-3x+2)的递增区间是(
)
A.
B.(2,+∞)
C.(-∞,)
D.(,+∞)参考答案:A略10.某商场在今年端午节的促销活动中,对6月9日时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为3万元,则11时至12时的销售额为(
)A.8万元 B.10万元 C.12万元 D.15万元参考答案:C试题分析:由频率分布直方图知,9时至10时的销售额的频率为0.1,故销售总额为(万元),又11时至12时的销售额的频率为0.4,故销售额为万元.
二、填空题:本大题共7小题,每小题4分,共28分11.已知△ABC的边长为2的等边三角形,动点P满足,则的取值范围是.参考答案:[﹣,0]【考点】平面向量数量积的运算.【分析】根据题意,画出图形,结合图形化简,得出=cos2θ?,O为BC的中点,P在线段OA上,再设||=t,t∈[0,],计算(+)?的最大最小值即可.【解答】解:如图所示,△ABC中,设BC的中点为O,则=2,∵=sin2θ?+cos2θ?=sin2θ?+cos2θ?=(1﹣cos2θ)?+cos2θ?=+cos2θ?(﹣),即﹣=cos2θ?(﹣),可得=cos2θ?,又∵cos2θ∈[0,1],∴P在线段OA上,由于BC边上的中线OA=2×sin60°=,因此(+)?=2?,设||=t,t∈[0,],可得(+)?=﹣2t(﹣t)=2t2﹣2t=2(t﹣)2﹣,∴当t=时,(+)?取得最小值为﹣;当t=0或时,(+)?取得最大值为0;∴的取值范围是[﹣,0].故答案为:[﹣,0].12.已知,则________,________.参考答案:-2
2【分析】利用两角和差正切公式可求得;分子分母同时除以,从而构造出,代入求得结果.【详解】本题正确结果:;【点睛】本题考查利用两角和差正切公式求值、关于的齐次式的求解问题,属于基础题.13.幂函数的图象经过点(3,),幂函数的解析式为_____________.参考答案:略14.已知则
.参考答案:略15.式子的值为
.参考答案:5略16.若,则
参考答案:217.已知与之间的一组数据为则与的回归直线方程为__
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)已知函数是定义在上的偶函数,已知时,.(1)画出偶函数的图象;(2)根据图象,写出的单调区间;同时写出函数的值域.参考答案:略19.为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第i个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.(1)求家庭的月储蓄y对月收入x的线性回归方程;(2)指出(1)中所求出方程的系数,并判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.参考答案:(1);(2)正相关;(3)2.2千元.【分析】(1)直接利用公式计算回归方程为:.(2)由(1),故正相关.(3)把代入得:.【详解】(1)∵,,样本中心点为:∴由公式得:把代入得:所求回归方程为:;(2)由(1)知,所求出方程的系数为:,,∵,∴与之间是正相关.(3)把代入得:(千元)即该居民区某家庭月收入为9千元时,预测该家庭的月储蓄为2.2千元.【点睛】本题考查了回归方程的计算和预测,意在考查学生的计算能力.20.已知函数的最小正周期是,最小值是-2,且图象经过点,求这个函数的解析式.参考答案:..............3分由题意知,∴..........6分∵图象经过点,∴,即又,∴.............10分故函数的解析式为...............12分21.已知点A(﹣1,3),B(5,﹣7)和直线l:3x+4y﹣20=0.(1)求过点A与直线l平行的直线l1的方程;(2)求过A,B的中点与l垂直的直线l2的方程.参考答案:【考点】直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】(1)根据两直线平行,斜率相等,求出直线的斜率,用点斜式求得直线l1的方程.(2)A,B的中点坐标,根据两直线垂直,斜率之积等于﹣1,求出直线的斜率,用点斜式求得直线l2的方程.【解答】解:(1)3x+4y﹣20=0的斜率为,因为l1∥l,所以,代入点斜式,得,化简,得3x+4y﹣9=0.(2)A,B的中点坐标为(2,﹣2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同 仲裁诉讼条款
- 大班音乐绘本《月光长廊》课件
- 2024上海市非定期集装箱道路货物运输合同
- 三年级语文上册第一单元测试卷-基础知识与综合能力篇 含答案 部编版
- 2024家庭水电装修合同书
- 2024收银员聘用合同
- 2024标准销售代理合同格式
- 深圳大学《哲学经典与人生》2021-2022学年第一学期期末试卷
- 深圳大学《形体训练(流行舞蹈)》2022-2023学年第一学期期末试卷
- 合同样本-土建合同范本8篇
- 2024年江苏省中等职业学校学生学业水平考试机械CAD绘图试卷(含5张图)
- 2023年中国铁路国际有限公司招聘考试试题及答案
- 沪科版(2024)八年级全一册物理第一学期期中学业质量测试卷(含答案)
- 计算机图形学智慧树知到期末考试答案章节答案2024年北京理工大学
- 2024年山东省港口集团有限公司招聘笔试参考题库含答案解析
- 30屈原《楚辞·橘颂》课件
- 《学生仪容仪表》主题班会PPT课件
- 国民经济统计学 第3章中间消耗及投入产出核算
- 课程设计(论文)3kta梨果酱车间工艺设计
- 毕业设计(论文)长沙办公楼空调系统设计
- 第三章电阻材料
评论
0/150
提交评论